Permeability of a Fumasep-FAD Membrane for Selected Inorganic Acids
Corresponding Author
Zdeněk Palatý
University of Pardubice, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic
Correspondence: Zdeněk Palatý ([email protected]), University of Pardubice, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic.Search for more papers by this authorHelena Bendová
University of Pardubice, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic
Search for more papers by this authorCorresponding Author
Zdeněk Palatý
University of Pardubice, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic
Correspondence: Zdeněk Palatý ([email protected]), University of Pardubice, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic.Search for more papers by this authorHelena Bendová
University of Pardubice, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic
Search for more papers by this authorAbstract
Salt and acid-containing mixtures can effectively be separated by processes based on polymeric ion-exchange membranes, especially diffusion dialysis. The transport of selected inorganic acids (HCl, HF, HNO3, and H2SO4) through an anion-exchange membrane Fumasep-FAD was experimentally studied in a two-compartment batch dialyzer. The process was quantified by permeability of the membrane obtained from the dependences of the acid concentrations and liquid volumes upon time in both compartments of the dialyzer. The experiments revealed that this membrane is highly permeable for the acids investigated.
References
- 1 A. Narębska, M. Staniszewski, Sep. Sci. Technol. 2008, 43 (3), 490–501. DOI: 10.1080/01496390701787388
- 2 J. Xu, S. G. Lu, D. Fu, J. Hazard. Mater. 2009, 165 (1–3), 832–837. DOI: 10.1016/j.jhazmat.2008.10.064
- 3 Z. Palatý, H. Bendová, Sep. Purif. Technol. 2009, 66 (1), 45–50. DOI: 10.1016/j.seppur.2008.11.026
- 4 J. Xu, D. Fu, S. G. Lu, Sep. Purif. Technol. 2009, 69 (2), 168–173. DOI: 10.1016/j.seppur.2009.07.015
- 5 J. Y. Luo, C. M. Wu, Y. H. Wu, T. W. Xu, J. Membr. Sci. 2010, 347 (1–2), 240–249. DOI: 10.1016/j.memsci.2009.10.029
- 6 J. Y. Luo, C. M. Wu, Y. H. Wu, T. W. Xu, Sep. Purif. Technol. 2011, 78 (1), 97–102. DOI: 10.1016/j.seppur.2011.01.028
- 7 C. Wei, X. B. Li, Z. G. Deng, G. Fan, M. T. Li, C. X. Li, J. Hazard. Mater. 2010, 176 (1–3), 226–230. DOI: 10.1016/j.jhazmat.2009.11.017
- 8 S. J. Lan, X. M. Wen, Z. H. Zhu, F. Shao, C. L. Zhu, Desalination 2011, 278 (1–3), 227–230. DOI: 10.1016/j.desal.2011.05.031
- 9 Z. Palatý, H. Bendová, Sep. Purif. Technol. 2011, 76 (3), 400–406. DOI: 10.1016/j.seppur.2010.11.011
- 10 Z. Palatý, H. Bendová, Chem. Pap. 2011, 65 (2), 233–241. DOI: 10.2478/s11696-011-0007-4
- 11 Z. Palatý, H. Bendová, J. Membr. Sci. 2011, 373 (1–2), 277–284. DOI: 10.1016/j.memsci.2011.02.006
- 12 W. Li, Y. M. Zhang, J. Huang, X. B. Zhu, Y. Wang, Sep. Purif. Technol. 2012, 96, 44–49. DOI: 10.1016/j.seppur.2012.05.011
- 13 C. Wang, C. M. Wu, Y. H. Wu, T. W. Xu, J. Hazard. Mater. 2013, 261, 114–122. DOI: 10.1016/j.jhazmat.2013.07.018
- 14 J. Y. Luo, C. M. Wu, Y. H. Wu, T. W. Xu, Sep. Purif. Technol. 2013, 118, 716–722. DOI: 10.1016/j.seppur.2013.08.014
- 15 K. Wang, W. H. Xing, Z. X. Zhong, Y. Q. Fan, Sep. Purif. Technol. 2013, 110, 144–149. DOI: 10.1016/j.seppur.2013.03.013
- 16 F. L. Mao, G. C. Zhang, J. J. Tong, T. W. Xu, Y. H. Wu, Sep. Purif. Technol. 2014, 122, 376–383. DOI: 10.1016/j.seppur.2013.11.031
- 17 X. Y. Li, J. B. Miao, R. Xia, B. Yang, P. Chen, M. Cao, J. S. Qian, Microporous Mesoporous Mater. 2016, 236, 48–53. DOI: 10.1016/j.micromeso.2016.08.019
- 18 Z. Palatý, H. Bendová, Sep. Purif. Technol. 2017, 172, 277–284. DOI: 10.1016/j.seppur.2016.08.020
- 19 C. Q. Xu, S. Xue, P. Wang, C. M. Wu, Y. H. Wu, Sep. Purif. Technol. 2017, 172, 140–146. DOI: 10.1016/j.seppur.2016.08.012
- 20 F. Harnisch, U. Schröder, F. Scholz, Environ. Sci. Technol. 2008, 42 (5), 1740–1746. DOI: 10.1021/es702224a
- 21 J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, J. Membr. Sci. 2009, 327 (1–2), 136–144. DOI: 10.1016/j.memsci.2008.11.015
- 22 J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, G. J. Harmsen, J. Membr. Sci. 2009, 343 (1–2), 7–15. DOI: 10.1016/j.memsci.2009.05.047
- 23 P. Długołęcki, B. Anet, S. J. Metz, K. Nijmeijer, W. Wessling, J. Membr. Sci. 2010, 346 (1), 163–171. DOI: 10.1016/j.memsci.2009.09.033
- 24 Z. Palatý, A. Žáková, Sep. Sci. Technol. 2007, 42 (9), 1965–1983. DOI: 10.1080/15363830701313362
- 25 Z. Palatý, H. Bendová, Chem. Eng. Process. 2011, 50 (2), 160–166. DOI: 10.1016/j.cep.2011.01.002
- 26 Z. Palatý, A. Žáková, J. Membr. Sci. 2000, 173 (2), 211–223. DOI: 10.1016/S0376-7388(00)00363-X
- 27 O. Sőhnel, P. Novotný, Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam 1985.