Enhanced CO2 Capture Performance of Limestone by Industrial Waste Sludge
Ying-chao Hu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorCorresponding Author
Wen-qiang Liu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Correspondence: Wen-qiang Liu ([email protected]), Ming-hou Xu ([email protected]) Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorYuan-dong Yang
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorJian Sun
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorZi-jian Zhou
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorCorresponding Author
Ming-hou Xu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Correspondence: Wen-qiang Liu ([email protected]), Ming-hou Xu ([email protected]) Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorYing-chao Hu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorCorresponding Author
Wen-qiang Liu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Correspondence: Wen-qiang Liu ([email protected]), Ming-hou Xu ([email protected]) Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorYuan-dong Yang
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorJian Sun
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorZi-jian Zhou
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Search for more papers by this authorCorresponding Author
Ming-hou Xu
Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China
Correspondence: Wen-qiang Liu ([email protected]), Ming-hou Xu ([email protected]) Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, 1037 Luoyu Road, 430074 Wuhan, China.Search for more papers by this authorAbstract
Although inert supports have been proved effective to enhance CO2 capture performance of CaO sorbents, more commonly used supports are derived from expensive raw materials such as nitrates and organometallic precursors. Cheap waste sludge from the steel plant was utilized, which has a high daily output and has not received effective reuse, to promote the CO2 capture performance. The results showed that the sludge effectively promoted the performance of limestone. Homogeneously dispersed inert material of MgO, acting as the metal framework to resist sintering, was responsible for the enhanced performance. The introduction of waste sludge into the calcium looping could not only improve the sorbent performance, but also provide a potentially effective way to reuse the waste sludge.
Supporting Information
Filename | Description |
---|---|
ceat201700100-sup-0001-misc_information.pdf235.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1IPCC, Climate Change 2014 – Impacts, Adaptation and Vulnerability: Regional Aspects, Cambridge University Press, Cambridge, UK 2014.
- 2 Trends in Atmospheric Carbon Dioxide: Globally Averaged Marine Surface Monthly Mean Data, U.S. Department of Commerce, Washington, DC 2016.
- 3 Statistics 2016, International Energy Agency (IEA), Paris 2016.
- 4 Carbon Dioxide Capture and Storage, (Eds: B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer), IPCC special report, Cambridge University Press, Cambridge, UK 2005.
- 5 J. Y. Wang, L. Huang, R. Y. Yang, Z. Zhang, J. W. Wu, Y. S. Gao, Q. Wang, D. O'Hare, Z. Y. Zhong, Energy Environ Sci. 2014, 7 (11), 3478–3518.
- 6 J. C. Abanades, E. J. Anthony, J. Wang, J. E. Oakey, Environ. Sci. Technol. 2005, 39 (8), 2861–2866.
- 7 C. Qin, J. Yin, B. Feng, J. Ran, L. Zhang, V. Manovic, Appl. Energy 2016, 164, 400–410.
- 8 B. Arias, M. Alonso, C. Abanades, Ind. Eng. Chem. Res. 2017, 56 (10), 2634–2640.
- 9 Y. Xu, C. Luo, Y. Zheng, H. Ding, L. Zhang, Energy Fuels 2016, 30 (4), 3219–3226.
- 10 V. Manovic, E. J. Anthony, Ind. Eng. Chem. Res. 2009, 48 (19), 8906–8912.
- 11 Y. Li, X. Ma, W. Wang, C. Chi, J. Shi, L. Duan, Chem. Eng. J. 2017, 316, 438–448.
- 12 Y. Xu, C. Luo, Y. Zheng, H. Ding, D. Zhou, L. Zhang, Chem. Eng. Technol. 2017, 40 (3), 522–528.
- 13 Y. Hu, W. Liu, Y. Peng, Y. Yang, J. Sun, H. Chen, Z. Zhou, M. Xu, Fuel Process. Technol. 2017, 160, 70–77.
- 14 Y. Hu, W. Liu, J. Sun, X. Yang, Z. Zhou, Y. Zhang, M. Xu, Energy Fuels 2016, 30 (8), 6606–6613.
- 15 Y. Li, M. Su, X. Xie, S. Wu, C. Liu, Appl. Energy 2015, 145, 60–68.
- 16 H. R. Radfarnia, M. C. Iliuta, Chem. Eng. J. 2013, 232, 280–289.
- 17 Y. Hu, W. Liu, H. Chen, Z. Zhou, W. Wang, J. Sun, X. Yang, X. Li, M. Xu, Fuel 2016, 181, 199–206.
- 18 P. Lan, S. Wu, Chem. Eng. Technol. 2014, 37 (4), 580–586.
- 19 X. Ma, Y. Li, L. Shi, Z. He, Z. Wang, Appl. Energy 2016, 168, 85–95.
- 20 M. Aihara, T. Nagai, J. Matsushita, Y. Negishi, H. Ohya, Appl. Energy 2001, 69 (3), 225–238.
- 21 Y. Hu, W. Liu, J. Sun, M. Li, X. Yang, Y. Zhang, M. Xu, Chem. Eng. J. 2015, 273, 333–343.
- 22 J. M. Valverde, A. Perejon, L. A. Perez-Maqueda, Environ. Sci. Technol. 2012, 46 (11), 6401–6408.
- 23 H. R. Radfarnia, M. C. Iliuta, Ind. Eng. Chem. Res. 2012, 51 (31), 10390–10398.
- 24 W. Liu, B. Feng, Y. Wu, G. Wang, J. Barry, J. C. D. da Costa, Environ. Sci. Technol. 2010, 44 (8), 3093–3097.
- 25 Y. Li, C. Zhao, Q. Ren, L. Duan, H. Chen, X. Chen, Fuel Process. Technol. 2009, 90 (6), 825–834.
- 26 V. Manovic, E. J. Anthony, Environ. Sci. Technol. 2009, 43 (18), 7117–7122.
- 27 F. N. Ridha, V. Manovic, A. Macchi, E. J. Anthony, Int. J. Greenhouse Gas Control 2012, 6, 164–170.
- 28 Y. Hu, Q. Jia, S. Shan, S. Li, L. Jiang, Y. Wang, J. Taiwan Inst. Chem. E 2015, 46, 155–159.
- 29 H. Chen, N. Khalili, Ind. Eng. Chem. Res. 2017, 56 (7), 1888–1894.
- 30 H. Chen, F. Wang, C. Zhao, N. Khalili, Chem. Eng. J. 2017, 309, 725–737.
- 31Crude Steel Production, Statistics archive, World Steel Association, Brussels 2016.
- 32 Y. Hu, W. Liu, J. Sun, M. Li, X. Yang, Y. Zhang, X. Liu, M. Xu, Fuel 2016, 167, 17–24.
- 33 G. S. Grasa, J. C. Abanades, Ind. Eng. Chem. Res. 2006, 45 (26), 8846–8851.
- 34 J. C. Abanades, D. Alvarez, Energy Fuels 2003, 17 (2), 308–315.
- 35 D. Alvarez, J. C. Abanades, Ind. Eng. Chem. Res. 2005, 44 (15), 5608–5615.
- 36 Y. Hu, W. Liu, W. Wang, J. Sun, X. Yang, H. Chen, M. Xu, Chem. Eng. J. 2016, 296, 412–419.
- 37 T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, K. Tejima, Chem. Eng. Res. Des. 1999, 77 (1), 62–68.
- 38 B. Arias, M. E. Diego, J. C. Abanades, M. Lorenzo, L. Diaz, D. Martínez, J. Alvarez, A. Sánchez-Biezma, Int. J. Greenhouse Gas Control 2013, 18, 237–245.
- 39 J. C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D. E. Wiley, H. Li, M. T. Ho, E. Mangano, S. Brandani, Int. J. Greenhouse Gas Control 2015, 40, 126–166.
- 40 C. Chen, C. Zhao, C. Liang, K. Pang, Fuel Process. Technol. 2007, 88 (2), 171–178.
- 41 H. Lu, E. P. Reddy, P. G. Smirniotis, Ind. Eng. Chem. Res. 2006, 45 (11), 3944–3949.
- 42 V. Manovic, E. J. Anthony, Energy Fuels 2009, 23 (10), 4797–4804.
- 43 J. Sun, W. Liu, Y. Hu, J. Wu, M. Li, X. Yang, W. Wang, M. Xu, Chem. Eng. J. 2016, 285, 293–303.
- 44 Y. Hu, X. Liu, Z. Zhou, W. Liu, M. Xu, Fuel 2017, 187, 328–337.
- 45 M. Broda, V. Manovic, E. J. Anthony, C. R. Müller, Environ. Sci. Technol. 2014, 48 (9), 5322–5328.