Preparation of γ-Fe2O3 Catalysts and their deNOx Performance: Effects of Precipitation Conditions
Dong Wang
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China
These authors contributed equally to this work.
Search for more papers by this authorQilei Yang
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
These authors contributed equally to this work.
Search for more papers by this authorXiansheng Li
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Search for more papers by this authorCorresponding Author
Yue Peng
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Correspondence: Yue Peng ([email protected]), Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China; Chunmei Lu ([email protected]), Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China.Search for more papers by this authorBing Li
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Search for more papers by this authorWenzhe Si
Massachusetts Institute of Technology, Department of Materials Science and Engineering, No. 77, Massachusetts Ave., 02139 Massachusetts, MA Cambridge, USA
Search for more papers by this authorCorresponding Author
Chunmei Lu
Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China
Correspondence: Yue Peng ([email protected]), Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China; Chunmei Lu ([email protected]), Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China.Search for more papers by this authorLina Gan
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Search for more papers by this authorDong Wang
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China
These authors contributed equally to this work.
Search for more papers by this authorQilei Yang
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
These authors contributed equally to this work.
Search for more papers by this authorXiansheng Li
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Search for more papers by this authorCorresponding Author
Yue Peng
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Correspondence: Yue Peng ([email protected]), Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China; Chunmei Lu ([email protected]), Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China.Search for more papers by this authorBing Li
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Search for more papers by this authorWenzhe Si
Massachusetts Institute of Technology, Department of Materials Science and Engineering, No. 77, Massachusetts Ave., 02139 Massachusetts, MA Cambridge, USA
Search for more papers by this authorCorresponding Author
Chunmei Lu
Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China
Correspondence: Yue Peng ([email protected]), Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China; Chunmei Lu ([email protected]), Shandong University, National Engineering Laboratory for Coal-Burning Pollutants Emission Reduction, School of Energy and Power Engineering, No. 17513, Jingshi Road, 250061 Jinan, China.Search for more papers by this authorLina Gan
Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, No. 1, Tsinghua Yuan, 100084 Beijing, China
Search for more papers by this authorAbstract
Magnetic γ-Fe2O3 catalysts were prepared by microwave-assisted coprecipitation utilizing the direct-titrate and back-titrate precipitation technique with different precipitants, namely, (NH4)2CO3, NaOH, Na2CO3, and NH4OH, which were evaluated in the selective catalytic reduction of NOx with NH3. The optimum γ-Fe2O3 catalyst preparation method was direct titration with NH4OH as the precipitant, which exhibits high deNOx efficiency. This direct titration was effective to maintain the proper crystallization degree of γ-Fe2O3, improve the pore structure, and suppress the formation of α-Fe2O3 phase, being advantageous to get tiny and uniform discrete γ-Fe2O3 particles with high activity in selective catalytic reduction. NH4+-based precipitants in direct titration leads to an increase of the surface O/Fe atom ratio, and more lattice oxygen sites are exposed to the crystal surface.
Supporting Information
Filename | Description |
---|---|
ceat201600488-sup-0001-misc_information.pdf436.1 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Z. Liu, J. Hao, L. Fu, T. Zhu, Appl. Catal., B 2003, 44, 355–370. DOI: 10.1016/S0926-3373(03)00103-6
- 2 S. Roy, M. Hegde, G. Madras, Appl. Energy 2009, 86, 2283–2297. DOI: 10.1016/j.apenergy.2009.03.022
- 3 C. You, X. Xu, Energy 2010, 35, 4467–4472. DOI: 10.1016/j.energy.2009.04.019
- 4 M. Zhang, C. Li, L. Qu, M. Fu, G. Zeng, C. Fan, J. Ma, F. Zhan, Appl. Surf. Sci. 2014, 300, 58–65. DOI: 10.1016/j.apsusc.2014.02.002
- 5 J. Liu, T. Zhu, in Nato Science for Peace and Security Series C: Environmental Security, Springer, Berlin 2013, 249–263.
- 6
G. Buscaa, L. Lietti, G. Ramis, F. Berti, Appl. Catal., B
1998, 18, 1–36. DOI: 10.1016/S0926-3373(98)00040-X
10.1016/S0926‐3373(98)00040‐X Google Scholar
- 7 T. Zhang, J. Liu, D. Wang, Z. Zhao, Y. Wei, K. Cheng, G. Jiang, A. Duan, Appl. Catal., B 2014, 148–149, 520–531. DOI: 10.1016/j.apcatb.2013.11.006
- 8 P. Balle, B. Geiger, S. Kureti, Appl. Catal., B 2009, 85, 109–119. DOI: 10.1016/j.apcatb.2008.07.001
- 9 S. Yang, C. Liu, H. Chang, L. Ma, Z. Qu, N. Yan, C. Wang, J. Li, Ind. Eng. Chem. Res. 2013, 52, 5601–5610. DOI: 10.1021/ie303272u
- 10 X. Lou, P. Liu, J. Li, Z. Li, K. He, Appl. Surf. Sci. 2014, 307, 382–387. DOI: 10.1016/j.apsusc.2014.04.041
- 11 B. Shakya, M. Harold, V. Balakotaiah, Chem. Eng. J. 2015, 278, 374–384. DOI: 10.1016/j.cej.2014.11.029
- 12 P. Metkar, V. Balakotaiah, M. Harold, Catal. Today 2012, 184, 115–128. DOI: 10.1016/j.cattod.2011.11.032
- 13 F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie, T. Hu, Appl. Catal., B 2010, 96, 408–420. DOI: 10.1016/j.apcatb.2010.02.038
- 14 G. Qi, R. Yang, Appl. Catal., B 2005, 60, 13–22. DOI: 10.1016/j.apcatb.2005.01.012
- 15 P. Metkar, N. Salazar, R. Muncrief, V. Balakotaiah, M. Harold, Appl. Catal., B 2011, 104, 110–126. DOI: 10.1016/j.apcatb.2011.02.022
- 16 M. Iwasaki, K. Yamazaki, K. Banno, H. Shinjoh, J. Catal. 2008, 260, 205–216. DOI: 10.1016/j.jcat.2008.10.009
- 17 S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, J. Catal. 2009, 268, 297–306. DOI: 10.1016/j.jcat.2009.09.028
- 18 I. Ellmersa, R. Vélezb, U. Bentrupb, W. Schwiegerc, A. Brücknerb, W. Grünerta, Catal. Today 2015, 258, 337–346. DOI: 10.1016/j.cattod.2014.12.017
- 19 Y. Wang, Z. Lei, B. Chen, Q. Guo, N. Liu, Appl. Surf. Sci. 2010, 256, 4042–4047. DOI: 10.1016/j.apsusc.2010.01.075
- 20 S. Skarlis, D. Berthout, A. Nicolle, C. Dujardin, P. Granger, Appl. Catal., B 2014, 148–149, 446–465. DOI: 10.1016/j.apcatb.2013.11.018
- 21 S. Shwan, J. Jansson, L. Olsson, M. Skoglundh, Appl. Catal., B 2014, 147, 111–123. DOI: 10.1016/j.apcatb.2013.08.042
- 22 M. Høj, M. Beier, J. Grunwaldt, S. Dahl, Appl. Catal., B 2009, 93, 166–176. DOI: 10.1016/j.apcatb.2009.09.026
- 23 P. Balle, B. Geiger, D. Klukowski, M. Pignatelli, S. Wohnrau, M. Menzel, I. Zirkwa, G. Brunklaus, S. Kureti, Appl. Catal., B 2009, 91, 587–595. DOI: 10.1016/j.apcatb.2009.06.031
- 24 Q. C. Lin, J. Li, L. Ma, J. Hao, Catal. Today 2010, 151, 251–256. DOI: 10.1016/j.cattod.2010.01.026
- 25 N. Apostolescu, B. Geiger, K. Hizbullah, M. Jan, S. Kureti, D. Reichert, F. Schott, W. Weisweiler, Appl. Catal., B 2006, 62, 104–114. DOI: 10.1016/j.apcatb.2005.07.004
- 26 X. Wang, K. Gui, J. Environ. Sci. 2013, 25, 2469–2475. DOI: 10.1016/S1001-0742(12)60331-3
- 27 A. Kato, S. Matsuda, F. Nakajima, M. Imanari, Y. Watanabe, J. Phys. Chem. 1981, 85, 1710–1713. DOI: 10.1021/j150612a024
- 28 H. Liu, H. Shon, X. Sun, S. Vigneswaran, H. Nan, Appl. Surf. Sci. 2011, 257, 5813–5819. DOI: 10.1016/j.apsusc.2011.01.110
- 29 G. Ramis, L. Yi, G. Busca, G. Turco, E. Kotur, R. Willey, J. Catal. 1995, 157, 523–535. DOI: 10.1006/jcat.1995.1316
- 30 G. Yao, F. Wang, X. Wang, K. Gui, Energy 2010, 35, 2295–2300. DOI: 10.1016/j.energy.2010.02.017
- 31 D. Wang, Y. Peng, S. Xiang, B. Li, L. Gan, C. Lu, J. Chen, L. Ma, J. Li, Appl. Catal., B 2018, 221, 556–564. DOI: 10.1016/j.apcatb.2017.09.045
- 32 Y. Chen, X. Gao, Z. Luo, X. Li, J. Zhou, M. Ni, K. Cen, J. Eng. Thermophys. 1997, 18, 517–520.
- 33 S. Yang, Y. Guo, N. Yan, Z. Qu, J. Xie, C. Yang, J. Jia, J. Hazard. Mater. 2011, 186, 508–515. DOI: 10.1016/j.jhazmat.2010.11.034
- 34 D. Wang, X. Zhang, C. Lu, K. Han, J. Peng, L. Xu, CIESC J. 2014, 65, 4805–4813.
- 35 W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Appl. Catal., B 2012, 115–116, 100–106. DOI: 10.1016/j.apcatb.2011.12.019
- 36 X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo, K. Cen, Catal. Commun. 2010, 11, 465–469. DOI: 10.1016/j.catcom.2009.11.024
- 37 P. Ning, Z. Song, H. Li, Q. Zhang, X. Liu, J. Zhang, X. Tang, Z. Huang, Appl. Surf. Sci. 2015, 332, 130–137. DOI: 10.1016/j.apsusc.2015.01.118
- 38 Q. Zhang, L. Xu, P. Ning, J. Gu, Q. Guan, Appl. Surf. Sci. 2014, 317, 955–961. DOI: 10.1016/j.apsusc.2014.09.017
- 39 W. Shan, F. Liu, H. He, X. Shi, C. Zhang, ChemCatChem 2011, 3, 1286–1289. DOI: 10.1002/cctc.201000409
- 40 R. Hong, B. Feng, L. Chert, G. Liu, H. Li, Y. Zheng, D. Wei, Biochem. Eng. J. 2008, 42, 290–300. DOI: 10.1016/j.bej.2008.07.009
- 41 M. Zheng, H. Lu, H. Liu, Y. Chen, J. Synth. Cryst. 2008, 5, 1249–1254.
- 42 K. Shen, Y. Zhang, X. Wang, H. Xu, K. Sun, C. Zhou, J. Energy Chem. 2013, 22, 617–623. DOI: 10.1016/S2095-4956(13)60081-9
- 43 F. Cao, S. Su, J. Xiang, P. Wang, S. Hu, L. Sun, A. C. Zhang, Fuel 2015, 139, 232–239. DOI: 10.1016/j.fuel.2014.08.060
- 44 Z. Liu, Y. Liu, B. Chen, T. Zhu, L. Ma, Catal. Sci. Technol. 2016, 6, 6688–6696. DOI: 10.1039/C5CY02278A
- 45 G. Zhang, P. Wang, Y. Shi, H. Ma, G. Hong, Chin. J. Catal. 2005, 26, 597–601.
- 46 I. Atribak, N. Guillén-Hurtado, A. Bueno-López, A. García-García, Appl. Surf. Sci. 2010, 256, 7706–7712. DOI: 10.1016/j.apsusc.2010.06.042
- 47 F. Arena, G. Italiano, K. Barbera, G. Bonura, L. Spadaro, F. Frusteri, Catal. Today 2009, 143, 80–85. DOI: 10.1016/j.cattod.2008.11.022
- 48 K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603–619.
- 49 F. Liu, K. Asakura, H. He, Y. Liu, W. Shan, X. Shi, C. Zhang, Catal. Today 2011, 164, 520–527. DOI: 10.1016/j.cattod.2010.10.008
- 50 S. Lee, H. Lee, S. Hong, Appl. Catal., A 2014, 470, 189–198. DOI: 10.1016/j.apcata.2013.10.057
- 51 B. Shen, F. Wang, T. Liu, Powder Technol. 2014, 253, 152–157. DOI: 10.1016/j.powtec.2013.11.015
- 52 M. Koebel, M. Elsener, G. Madia, Ind. Eng. Chem. Res. 2001, 40, 52–59. DOI: 10.1021/ie000551y