Approaches for Dispatchable Biomass Plants with Particular Focus on Steam Storage Devices
Corresponding Author
Matthias Stark
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.Search for more papers by this authorMatthias Sonnleitner
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
Search for more papers by this authorWilfried Zörner
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
Search for more papers by this authorRick Greenough
Institute of Energy and Sustainable Development, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom.
Search for more papers by this authorCorresponding Author
Matthias Stark
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.Search for more papers by this authorMatthias Sonnleitner
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
Search for more papers by this authorWilfried Zörner
Institute of New Energy Systems, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
Search for more papers by this authorRick Greenough
Institute of Energy and Sustainable Development, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom.
Search for more papers by this authorAbstract
An increasing share of fluctuating energy generation leads to new challenges in power grids. In addition, the demand for flexible power plants is growing. Solid biomass-fueled combined heat and power (CHP) plants are able to get modified into dispatchable power plants. Boundaries for this operation mode are summarized and several measures to achieve a flexible power generation in biomass CHP plants are concluded. The integration of a high-temperature storage system for buffering the plants' steam seems to be the most promising, however, the least investigated option. The tasks and necessary features of such storage systems were investigated and an overview of available technologies and systems for the storage of steam is given.
References
- 1 A. Castillo, D. F. Gayme, Energy Convers. Manage. 2014, 87, 885–894. DOI: 10.1016/j.enconman.2014.07.063
- 2 Federal Ministry for Economic Affairs and Energy, Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, BMWi, Berlin 2010.
- 3 Federal Ministry for Economic Affairs and Energy, Ein Strommarkt für die Energiewende, BMWi, Berlin 2015.
- 4 N. Szarka, F. Scholwin, M. Trommler, Energy 2013, 61, 18–26. DOI: 10.1016/j.energy.2012.12.053
- 5
D. Thrän, in Smart Bioenergy (Ed: D. Thrän), Springer, Cham 2015, Ch. 10.
10.1007/978-3-319-16193-8 Google Scholar
- 6 A. Ortwein, V. Lenz, in Smart Bioenergy (Ed: D. Thrän), Springer, Cham 2015, Ch. 4.
- 7 M. Dotzauer, K. Naumann, in Smart Bioenergy (Ed: D. Thrän), Springer, Cham 2015, Ch. 2.
- 8 M. Scheftelowitz, Stromerzeugung aus Biomasse, DBFZ, Leipzig 2014.
- 9 T. Savola, I. Keppo, Appl. Therm. Eng. 2005, 25 (8–9), 1219–1239. DOI: 10.1016/j.applthermaleng.2004.08.009
- 10 L. Eltrop, H. Hartmann, P. Heinrich, Leitfaden feste Biobrennstoffe, 4th ed., FNR, Gülzow 2014.
- 11 NEXT, Handelsfristen an Strommärkten, www.next-kraftwerke.de/wissen/strommarkt/spotmarkt-epex-spot (Accessed on March 23, 2016).
- 12 U. Herrmann, D. Kearney, Sol. Energy Eng. 2002, 124 (2), 142–152. DOI: 10.1115/1.1467601
- 13 M. Beer, M. Huber, 11th IAEE Conf., Vilnius, August 2010.
- 14 M. Pirouti, J. Wu, A. Bagdanavicius, in Proc. of Power Tech, IEEE, Trondheim 2011.
- 15 T. Muche, C. Höge, O. Renner, Renewable Energy 2016, 90, 62–76. DOI: 10.1016/j.renene.2015.12.051
- 16 B. Krautkremer, U. Hoffstede, 6th Bioenergy Conf. on Biomass Energy Use, Leipzig, November 2015.
- 17 G. Beckmann, P. V. Gilli, Thermal Energy Storage, Springer, Wien 1984.
- 18 W. Goldstern, Steam Storage Installations, 3rd ed., Pergamon Press, Oxford 1970.
- 19 P. V. Gilli, K. Fritz, IEA Symp. on Economic Integration of Nuclear Power Stations in Electric Power Systems, Vienna, October 1970.
- 20 G. Brauner, 7th Int. Energiewirtschaftstagung, Vienna, February 2011.
- 21 N. Vortmeyer, EP 2 708 719 A1, 2012.
- 22 E. Zarza, L. Valenzuela, L. Loreto, Energy 2004, 29 (5–6), 635–644. DOI: 10.1016/S0360-5442(03)00172-5
- 23 M. Eck, E. Zarza, M. Eickhoff, Solar Energy 2003, 74 (4), 341–351. DOI: 10.1016/S0038-092X(03)00111-7
- 24 M. Seitz, P. Cetin, M. Eck, Energy Procedia 2014, 49, 993–1002. DOI: 10.1016/j.egypro.2014.03.107
- 25 W. D. Steinmann, M. Eck, Solar Energy 2006, 80 (10), 1277–1282. DOI: 10.1016/j.solener.2005.05.013
- 26 A. Gil, M. Medrano, I. Martorell, Renewable Sustainable Energy Rev. 2010, 14 (1), 31–55. DOI: 10.1016/j.rser.2009.07.035
- 27 M. Medrano, A. Gil, I. Martorell, Renewable Sustainable Energy Rev. 2010, 14 (1), 56–72. DOI: 10.1016/j.rser.2009.07.036
- 28 S. Kuravi, J. Trahan, D. Y. Goswami, Prog. Energy Combust. Sci. 2013, 39 (4), 285–319. DOI: 10.1016/j.pecs.2013.02.001
- 29 D. Laing, C. Bahl, T. Bauer, Solar Energy 2011, 85 (4), 627–633. DOI: 10.1016/j.solener.2010.08.015
- 30 D. Laing, T. Bauer, W. D. Steinmann, Proc. of the 11th Int. Conf. on Thermal Energy Storage, EMTF Förlag, Stockholm 2009.
- 31 R. Osunaa, R. Olavarria, R. Morilloa, Solar PACES, Sevilla, June 2006.
- 32 F. Bai, C. Xu, Appl. Therm. Eng. 2001, 31 (14–15), 2764–2771. DOI: 10.1016/j.applthermaleng.2011.04.049
- 33 E. Xu, Q. Yu, Renewable Energy 2011, 36 (2), 848–857. DOI: 10.1016/j.renene.2010.08.010
- 34 J. Feldhoff, F. Schmitz, M. Eck, Solar Energy 2012, 86 (1), 520–530. DOI: 10.1016/j.solener.2011.10.026
- 35 D. Laing, T. Bauer, N. Breitenbach, Appl. Energy 2012, 109, 497–504. DOI: 10.1016/j.apenergy.2012.11.063