Analysis of CO2 Emission and Economic Feasibility for a Heat-Integrated Air Separation System
Corresponding Author
Lin Cong
China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China
Correspondence: Lin Cong ([email protected]), China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China.Search for more papers by this authorLiang Chang
Zhejiang University, Institute of Industrial Process Control, Department of Control Science and Engineering, 38# Zheda Road, 310027 Hangzhou, China
Search for more papers by this authorXinggao Liu
Zhejiang University, Institute of Industrial Process Control, Department of Control Science and Engineering, 38# Zheda Road, 310027 Hangzhou, China
Search for more papers by this authorXiaogang Deng
China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorHonglong Chen
China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorCorresponding Author
Lin Cong
China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China
Correspondence: Lin Cong ([email protected]), China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China.Search for more papers by this authorLiang Chang
Zhejiang University, Institute of Industrial Process Control, Department of Control Science and Engineering, 38# Zheda Road, 310027 Hangzhou, China
Search for more papers by this authorXinggao Liu
Zhejiang University, Institute of Industrial Process Control, Department of Control Science and Engineering, 38# Zheda Road, 310027 Hangzhou, China
Search for more papers by this authorXiaogang Deng
China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorHonglong Chen
China University of Petroleum (East China), College of Information and Control Engineering, 66# Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorAbstract
Cryogenic air separation is a high-energy consumption process and contributes significantly to greenhouse gas emissions. Reduction potentials of the CO2 emissions for both the full-tower heat-integrated air separation columns (F-HIASC) and the top-tower heat-integrated air separation columns (T-HIASC) are investigated. The optimization models of the minimum CO2 emissions are further proposed. The unit CO2 emissions of F-HIASC and T-HIASC can be decreased significantly compared to the conventional air separation columns (CASC). Furthermore, the capital cost and total annual cost are analyzed so as to evaluate properly the economic feasibility of HIASC. The results demonstrate that the total annual costs of F-HIASC and T-HIASC are much lower than that of CASC.
References
- 1 A. Sarvaramini, G. P. Assima, G. Beaudoin, F. Larachi, Fuel 2014, 115, 749–757. DOI: 10.1016/j.fuel.2013.07.087
- 2 H. Mikulcic, M. Vujanovic, N. Duic, Appl. Energy 2013, 101, 41–48. DOI: 10.1016/j.apenergy.2012.02.083
- 3 S. Banerjee, A. K. Jana, Sep. Purif. Technol. 2017, 189, 267–278. DOI: 10.1016/j.seppur.2017.08.003
- 4 T. Bisgaard, S. Skogestad, J. Abildskov, J. K. Huusom, Comput. Chem. Eng. 2017, 96, 196–211. DOI: 10.1016/j.compchemeng.2016.09.020
- 5 Y. Chen, C. Liu, Z. Geng, Chem. Eng. Process. 2018, 123, 233–248. DOI: 10.1016/j.cep.2017.11.013
- 6 H. Cong, X. Li, H. Li, J. P. Murphy, X. Gao, Sep. Purif. Technol. 2017, 188, 303–315. DOI: 10.1016/j.seppur.2017.07.047
- 7 T. Egger, C. Hiller, G. Fieg, Chem. Eng. Technol. 2018, 41 (4), 827–835. DOI: 10.1002/ceat.201700515
- 8 G. F. Porzio, B. Fornai, A. Amato, N. Matarese, M. Vannucci, L. Chiappelli, V. Colla, Appl. Energy 2013, 112, 818–833. DOI: 10.1016/j.apenergy.2013.05.005
- 9 J. Davison, Energy 2007, 32 (7), 1163–1176. DOI: 10.1016/j.energy.2006.07.039
- 10 R. Rehan, M. Nehdi, Environ. Sci. Policy 2005, 8 (2), 105–114. DOI: 10.1016/j.envsci.2004.12.006
- 11 P. Chiesa, S. Consonni, T. Kreutz, R. Williams, Int. J. Hydrogen Energy 2005, 30 (7), 747–767. DOI: 10.1016/j.ijhydene.2004.08.002
- 12 T. Kreutz, R. Williams, S. Consonni, P. Chiesa, Int. J. Hydrogen Energy 2005, 30 (7), 769–784. DOI: 10.1016/j.ijhydene.2004.08.001
- 13 X. Chen, G. Xu, Y. Li, W. Chen, J. Tang, Z. Fei, M. Cui, H. Guo, X. Qiao, Chem. Eng. Technol. 2017, 40 (12), 2329–2338. DOI: 10.1002/ceat.201600545
- 14 J. Kaur, V. K. Sangal, Chem. Eng. Technol. 2018, 41 (5), 1057–1065. DOI: 10.1002/ceat.201700297
- 15 L. Nguyen Van Duc, M. Le Quang, F. Ahmad, P. Luis, M. Lee, Chem. Eng. Technol. 2016, 39 (12), 2183–2195. DOI: 10.1002/ceat.201500635
- 16 E. Song, E. Wang, Chem. Eng. Technol. 2018, 41 (3), 517–523. DOI: 10.1002/ceat.201700192
- 17 A. A. Shenvi, D. M. Herron, R. Agrawal, Ind. Eng. Chem. Res. 2011, 50 (1), 119–130. DOI: 10.1021/ie101698f
- 18 A. K. Jana, D. Maiti, Energy 2013, 57, 527–534. DOI: 10.1016/j.energy.2013.05.014
- 19 A. K. Jana, M. M. N. Khan, D. Maiti, Chem. Eng. Process. 2013, 72, 122–129. DOI: 10.1016/j.cep.2013.08.002
- 20 H. Takase, S. Hasebe, J. Chem. Eng. Jpn. 2015, 48 (3), 222–229. DOI: 10.1252/jcej.14we077
- 21 L. Cong, Chem. Eng. Technol. 2016, 39 (12), 2196–2206. DOI: 10.1002/ceat.201500436
- 22 L. Cong, L. Chang, X. G. Liu, Ind. Eng. Chem. Res. 2015, 54 (51), 12897–12907. DOI: 10.1021/acs.iecr.5b03300
- 23 L. Cong, L. Chang, X. G. Liu, Sep. Purif. Technol. 2015, 150, 119–131. DOI: 10.1016/j.seppur.2015.06.038
- 24 L. Y. Sun, X. W. Chang, Y. M. Zhang, J. Li, Q. S. Li, Chem. Eng. Technol. 2010, 33 (3), 395–404. DOI: 10.1002/ceat.200900422
- 25 G. U. B. Babu, A. K. Jana, AIChE J. 2013, 59 (8), 2821–2832. DOI: 10.1002/aic.14076
- 26 M. A. Gadalla, Z. Olujic, P. J. Jansens, M. Jobson, R. Smith, Environ. Sci. Technol. 2005, 39 (17), 6860–6870. DOI: 10.1021/es049795q
- 27 M. Gadalla, Z. Olujic, A. de Rijke, P. J. Jansens, Energy 2006, 31 (13), 2409–2417. DOI: 10.1016/j.energy.2005.10.029
- 28 Y. Kansha, A. Kishimoto, T. Nakagawa, A. Tsutsumi, Sep. Purif. Technol. 2011, 77 (3), 389–396. DOI: 10.1016/j.seppur.2011.01.012
- 29 Y. Zhu, S. Legg, C. D. Laird, AIChE J. 2011, 57 (9), 2421–2430. DOI: 10.1002/aic.12464
- 30 Y. Fu, X. Liu, Chemom. Intell. Lab. Syst. 2016, 158, 14–20. DOI: 10.1016/j.chemolab.2016.08.008
- 31 D. Chen, X. Yuan, L. Xu, K. T. Yu, Ind. Eng. Chem. Res. 2013, 52 (16), 5781–5790. DOI: 10.1021/ie400112k
- 32 V. H. G. Diaz, G. Olivar Tost, Bioprocess Biosyst. Eng. 2018, 41 (3), 395–405. DOI: 10.1007/s00449-017-1874-z
- 33 R. Gutierrez-Guerra, R. Murrieta-Duenas, J. Cortez-Gonzalez, J. G. Segovia-Hernandez, S. Hernandez, A. Hernandez-Aguirre, Chem. Eng. Res. Des. 2017, 124, 46–57. DOI: 10.1016/j.cherd.2017.05.025
- 34 T.-L. Hsiao, K.-C. Weng, H.-Y. Lee, J. Taiwan Inst. Chem. Eng. 2017, 73, 37–49. DOI: 10.1016/j.jtice.2016.08.045
- 35 Z. B. Yan, X. G. Liu, Chem. Eng. Technol. 2011, 34 (2), 201–207. DOI: 10.1002/ceat.201000367
- 36 L. V. Van der Ham, S. Kjelstrup, Ind. Eng. Chem. Res. 2011, 50 (15), 9324–9338.
- 37 J. Rizk, M. Nemer, D. Clodic, Energy 2012, 37 (1), 417–429. DOI: 10.1016/j.energy.2011.11.012
- 38 L. Chang, X. G. Liu, Chem. Eng. Technol. 2014, 37 (4), 667–674. DOI: 10.1002/ceat.201300488
- 39 L. Chang, X. G. Liu, L. K. Dai, Y. X. Sun, Ind. Eng. Chem. Res. 2012, 51 (44), 14517–14524. DOI: 10.1021/ie3015582
- 40 L. Chang, X. Liu, Sep. Purif. Technol. 2014, 134, 73–81. DOI: 10.1016/j.seppur.2014.07.013
- 41 L. Chang, X. Liu, Chem. Eng. Technol. 2015, 38 (1), 164–172. DOI: 10.1002/ceat.201400070
- 42 M. N. Lakhoua, Adv. Electr. Comput. Eng. 2009, 9 (2), 90–98. DOI: 10.4316/aece.2009.02014
- 43 B. Suphanit, Energy 2010, 35 (3), 1505–1514. DOI: 10.1016/j.energy.2009.12.008
- 44 Z. Olujic, L. Sun, A. de Rijke, P. J. Jansens, Energy 2006, 31 (15), 3083–3096. DOI: 10.1016/j.energy.2006.03.030
- 45 M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya, T. Takamatsu, Chem. Eng. Res. Des. 2003, 81 (A1), 162–177. DOI: 10.1205/026387603321158320
- 46 C. Schmid, L. T. Biegler, Comput. Chem. Eng. 1994, 18 (9), 817–832. DOI: 10.1016/0098-1354(94)E0001-4