Gold Nanoparticle Synthesis, Morphology Control, and Stabilization Facilitated by Functional Polymers
Corresponding Author
P. Alexandridis
Department of Chemical and Biological Engineering, University at Buffalo – The State University of New York (SUNY), Buffalo, USA
Department of Chemical and Biological Engineering, University at Buffalo – The State University of New York (SUNY), Buffalo, USASearch for more papers by this authorCorresponding Author
P. Alexandridis
Department of Chemical and Biological Engineering, University at Buffalo – The State University of New York (SUNY), Buffalo, USA
Department of Chemical and Biological Engineering, University at Buffalo – The State University of New York (SUNY), Buffalo, USASearch for more papers by this authorAbstract
Gold nanoparticles exhibit novel optical and catalytic properties, are nontoxic and biocompatible, and attract considerable interest in a range of applications, e.g. photonics, diagnostics, and therapeutics. The morphology (size and shape) of the nanoparticles and their surface/colloidal properties are very important in the various applications. A methodology for the synthesis in aqueous media of gold nanoparticles with controlled size and shape and exceptional colloidal stability is reviewed. This methodology is based on designer polymers that can exhibit multiple functions on the basis of the polymer intramolecular and supramolecular organization. In addition to being water based, this methodology requires no external energy input and employs commercially available polymers, e.g., poly(ethylene oxide) containing Pluronics or Poloxamers, resulting in low cost and potential environmental benefits.
References
- 1 C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109 (29), 13857. DOI: 10.1021/jp0516846
- 2 C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025. DOI: 10.1021/cr030063a
- 3 T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, J. Feldmann, Adv. Mater. 2010, 22 (16), 1805. DOI: 10.1002/adma.200902557
- 4 D. V. Talapin, J. S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2010, 110 (1), 389. DOI: 10.1021/cr900137k
- 5 B. R. Cuenya, Thin Solid Films 2010, 518 (12), 3127. DOI: 10.1016/j.tsf.2010.01.018
- 6 M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104 (1), 293. DOI: 10.1021/cr030698+
- 7 S. Eustis, M. A. El-Sayed, Chem. Soc. Rev. 2006, 35, 209.
- 8 R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, Langmuir 2009, 25 (24), 13840. DOI: 10.1021/la9019475
- 9 J. F. Zhou, J. Ralston, R. Sedev, D. A. Beattie, J. Colloid Interface Sci. 2009, 331 (2), 251. DOI: 10.1016/j.jcis.2008.12.002
- 10 N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547. DOI: 10.1021/cr030067f
- 11
D. A. Giljohann,
D. S. Seferos,
W. L. Daniel,
M. D. Massich,
P. C. Patel,
C. A. Mirkin,
Angew. Chem., Int. Ed.
2010,
49 (19),
3280.
DOI: 10.1002/anie.200904359
10.1002/anie.200904359 Google Scholar
- 12 Y. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem., Int. Ed. 2009, 48 (1), 60. DOI: 10.1002/anie.200802248
- 13 T. K. Sau, A. L. Rogach, Adv. Mater. 2010, 22 (16), 1781. DOI: 10.1002/adma.200901271
- 14 K. Sohn, F. Kim, K. C. Pradel, J. S. Wu, Y. Peng, F. M. Zhou, J. X. Huang, ACS Nano 2009, 3 (8), 2191. DOI: 10.1021/nn900521u
- 15 M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 1994, 801.
- 16 M. Mandal, S. K. Ghosh, S. Kundu, K. Esumi, T. Pal, Langmuir 2002, 18 (21), 7792. DOI: 10.1021/la0118107
- 17 R. A. Caruso, M. Ashokkumar, F. Grieser, Langmuir 2002, 18 (21), 7831. DOI: 10.1021/la020276f
- 18 X. Sun, X. Jiang, S. Dong, E. Wang, Macromol. Rapid Commun. 2003, 24 (17), 1024.
- 19 T. Ishii, H. Otsuka, K. Kataoka, Y. Nagasaki, Langmuir 2004, 20 (3), 561. DOI: 10.1021/la035653i
- 20 M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, R. L. Whetten, J. Phys. Chem. B 1997, 101 (19), 3706. DOI: 10.1021/jp962922n
- 21 K. Rahme, F. Gauffre, J.-D. Marty, B. Payre, C. Mingotaud, J. Phys. Chem. C 2007, 111 (20), 7273. DOI: 10.1021/jp070274+
- 22 L. Reijnders, J. Ind. Ecol. 2008, 12 (3), 297. DOI: 10.1111/j.1530-9290.2008.00049.x
- 23 H. Sengul, T. L. Theis, S. Ghosh, J. Ind. Ecol. 2008, 12 (3), 329. DOI: 10.1111/j.1530-9290.2008.00046.x
- 24 T. Sakai, P. Alexandridis, Langmuir 2004, 20 (20), 8426. DOI: 10.1021/la049514s
- 25 P. Alexandridis, T. Sakai, US Patent 7 718 094, 2010.
- 26 M. R. Bockstaller, R. A. Mickiewicz, E. L. Thomas, Adv. Mater. 2005, 17 (11), 1331. DOI: 10.1002/adma.200500167
- 27 R. B. Grubbs, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 4323.
- 28 R. A. Vaia, J. F. Maguire, Chem. Mater. 2007, 19 (11), 2736. DOI: 10.1021/cm062693+
- 29 D. C. Pozzo, L. M. Walker, Eur. Phys. J. E: Soft Matter Biol. Phys. 2008, 26 (1/2), 183. DOI: 10.1140/epje/i2007-10303-4
- 30 S. K. Kumar, R. Krishnamoorti, Ann. Rev. Chem. Biomol. Eng. 2010, 1, 37. DOI: 10.1146/annurev-chembioeng-073009-100856
- 31 P. Alexandridis, T. A. Hatton, Colloids Surf., A 1995, 96 (1/2), 1.
- 32 P. Alexandridis, Curr. Opin. Colloid Interface Sci. 1997, 2 (5), 478.
- 33 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
- 34 G. J. de A. A. Soler-Illia, E. L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interface Sci. 2003, 8, 109.
- 35 Y. Wan, D. Y. Zhao, Chem. Rev. 2007, 107 (7), 2821. DOI: 10.1021/cr068020s
- 36 G. N. Karanikolos, P. Alexandridis, G. Itskos, A. Petrou, T. J. Mountziaris, Langmuir 2004, 20 (3), 550. DOI: 10.1021/la035397+
- 37 G. N. Karanikolos, P. Alexandridis, R. Mallory, A. Petrou, T. J. Mountziaris, Nanotechnology 2005, 16 (10), 2372. DOI: 10.1088/0957-4484/16/10/063
- 38 G. N. Karanikolos, N. L. Law, R. Mallory, A. Petrou, P. Alexandridis, T. J. Mountziaris, Nanotechnology 2006, 17 (13), 3121. DOI: 10.1088/0957-4484/17/13/007
- 39 G. N. Karanikolos, P. Alexandridis, T. J. Mountziaris, Mater. Sci. Eng., B 2008, 152 (1–3), 66. DOI: 10.1016/j.mseb.2008.06.028
- 40 P. Alexandridis, G. N. Karanikolos, T. J. Mountziaris, US Patent 7 608 237, 2009.
- 41 P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Macromolecules 1994, 27 (9), 2414.
- 42 Y. N. Lin, P. Alexandridis, J. Phys. Chem. B 2002, 106 (42), 10834. DOI: 10.1021/jp014221i
- 43 P. Alexandridis, R. J. Spontak, Curr. Opin. Colloid Interface Sci. 1999, 4 (2), 130.
- 44 P. Alexandridis, D. L. Zhou, A. Khan, Langmuir 1996, 12 (11), 2690.
- 45 Z. Y. Gu, P. Alexandridis, Macromolecules 2004, 37 (3), 912. DOI: 10.1021/ma0206218
- 46 G. Schmidt, W. Richtering, P. Lindner, P. Alexandridis, Macromolecules 1998, 31 (7), 2293.
- 47 B. Svensson, U. Olsson, P. Alexandridis, Langmuir 2000, 16 (17), 6839.
- 48 R. Ivanova, B. Lindman, P. Alexandridis, Langmuir 2000, 16 (23), 9058.
- 49 R. Ivanova, B. Lindman, P. Alexandridis, Adv. Colloid Interface Sci. 2001, 89, 351.
- 50 P. Alexandridis, K. Andersson, J. Phys. Chem. B 1997, 101 (41), 8103.
- 51 B. Svensson, U. Olsson, P. Alexandridis, K. Mortensen, Macromolecules 1999, 32 (20), 6725.
- 52 T. Sakai, P. Alexandridis, J. Phys. Chem. B 2005, 109 (16), 7766. DOI: 10.1021/jp046221z
- 53 A. Warshawsky, R. Kalir, A. Deshe, H. Berkovitz, A. Patchornik, J. Am. Chem. Soc. 1979, 101 (15), 4249.
- 54 S. Chen, C. Guo, G. H. Hu, J. Wang, J. H. Ma, X. F. Liang, L. Zheng, H. Z. Liu, Langmuir 2006, 22 (23), 9704. DOI: 10.1021/la061093m
- 55 K.-J. Liu, Macromolecules 1968, 1 (4), 308.
- 56 J. Polte, F. Emmerling, M. Radtke, U. Reinholz, H. Riesemeier, A. F. Thunemann, Langmuir 2010, 26 (8), 5889. DOI: 10.1021/la903829q
- 57 D. Ray, V. K. Aswal, J. Macromol. Sci., Part B: Phys. 2010, 49 (4), 810. DOI: 10.1080/00222341003603743
- 58 S. Goy-Lopez, E. Castro, P. Taboada, V. Mosquera, Langmuir 2008, 24 (22), 13186. DOI: 10.1021/la802279j
- 59 P. Alexandridis, L. Yang, Macromolecules 2000, 33 (9), 3382.
- 60 P. Alexandridis, L. Yang, Macromolecules 2000, 33 (15), 5574.
- 61 T. Sakai, P. Alexandridis, Langmuir 2005, 21 (17), 8019. DOI: 10.1021/la050756h
- 62 P. Alexandridis, J. F. Holzwarth, Langmuir 1997, 13 (23), 6074.
- 63 P. Khullar, A. Mahal, V. Singh, T. S. Banipal, G. Kaur, M. S. Bakshi, Langmuir 2010, 26 (13), 11363. DOI: 10.1021/la100734p
- 64 B. Viswanath, P. Kundu, A. Halder, N. Ravishankar, J. Phys. Chem. C 2009, 113 (39), 16866. DOI: 10.1021/jp903370f
- 65 X. H. Huang, S. Neretina, M. A. El-Sayed, Adv. Mater. 2009, 21 (48), 4880. DOI: 10.1002/adma.200802789
- 66 T. Sakai, P. Alexandridis, Nanotechnology 2005, 16 (7), S344. DOI: 10.1088/0957-4484/16/7/006
- 67 L. Y. Wang, X. Chen, J. Zhan, Y. C. Chai, C. J. Yang, L. M. Xu, W. C. Zhuang, B. Jing, J. Phys. Chem. B 2005, 109 (8), 3189. DOI: 10.1021/jp0449152
- 68 T. Sakai, P. Alexandridis, Macromol. Symp. 2010, 289, 18. DOI: 10.1002/masy.200900003
- 69 M. S. Bakshi, A. Kaura, P. Bhandari, G. Kaur, K. Torigoe, K. Esumi, J. Nanosci. Nanotechnol. 2006, 6 (5), 1405. DOI: 10.1166/jnn.2006.196
- 70 C. X. Zhang, J. L. Zhang, B. X. Han, Y. J. Zhao, W. Li, Green Chem. 2008, 10 (10), 1094. DOI: 10.1039/b805392h
- 71 W.-K. Lee, S.-H. Cha, K.-H. Kim, B.-W. Kim, J.-C. Lee, J. Solid State Chem. 2009, 182 (12), 3243. DOI: 10.1016/j.jssc.2009.09.020
- 72 Y. J. Xiong, J. M. McLellan, Y. D. Yin, Y. N. Xia, Angew. Chem., Int. Ed. 2007, 46 (5), 790. DOI: 10.1002/anie.200604032
- 73 J. Xu, S. Y. Li, J. Weng, X. F. Wang, Z. M. Zhou, K. Yang, M. Litt, X. Chen, Q. Cui, M. Y. Cao, Q. Q. Zhang, Adv. Funct. Mater. 2008, 18 (2), 277. DOI: 10.1002/adfm.200700123
- 74 S. S. Shankar, S. Bhargava, M. Sastry, J. Nanosci. Nanotechnol. 2005, 5 (10), 1721. DOI: 10.1166/jnn.2005.192
- 75 O. M. Magnussen, Chem. Rev. 2002, 102 (3), 679. DOI: 10.1021/cr000069p
- 76 K. Rahme, P. Vicendo, C. Ayela, B. Payre, C. Mingotaud, F. Gauffre, Chem. Eur. J. 2009, 15 (42), 11151. DOI: 10.1002/chem.200901564
- 77 K. Rahme, J. Oberdisse, R. Schweins, C. Gaillard, J.-D. Marty, C. Mingotaud, F. Gauffre, ChemPhysChem 2008, 9 (15), 2230. DOI: 10.1002/cphc.200800358
- 78 S. Chen, C. Guo, G.-H. Hu, H.-Z. Liu, X.-F. Liang, J. Wang, J.-H. Ma, L. Zheng, Colloid Polym. Sci. 2007, 285 (14), 1543. DOI: 10.1007/s00396-007-1721-x
- 79 S. Goy-Lopez, P. Taboada, A. Cambon, J. Juarez, C. Alvarez-Lorenzo, A. Concheiro, V. Mosquera, J. Phys. Chem. B 2010, 114 (1), 66. DOI: 10.1021/jp908569z
- 80 T. Sakai, M. Ishigaki, T. Okada, S. Mishima, J. Nanosci. Nanotechnol. 2010, 10 (2), 919. DOI: 10.1166/jnn.2010.1899
- 81 A. Kumar, S. Mandal, P. R. Selvakannan, R. Pasricha, A. B. Mandale, M. Sastry, Langmuir 2003, 19 (15), 6277. DOI: 10.1021/la034209c
- 82 M. Aslam, L. Fu, M. Su, K. Vijayamohanan, V. P. Dravid, J. Mater. Chem. 2004, 14 (12), 1795. DOI: 10.1039/b402823f
- 83 T. Ishii, H. Otsuka, K. Kataoka, Y. Nagasaki, Langmuir 2004, 20 (3), 561. DOI: 10.1021/la035653i
- 84 J. J. Yuan, A. Schmid, S. P. Armes, A. L. Lewis, Langmuir 2006, 22 (26), 11022. DOI: 10.1021/la0616350
- 85 A. Meristoudi, S. Pispas, Polymer 2009, 50 (13), 2743. DOI: 10.1016/j.polymer.2009.04.045
- 86 T. Sakai, T. Mukawa, K. Tsuchiya, H. Sakai, M. Abe, J. Nanosci. Nanotechnol. 2009, 9 (1), 461. DOI: 10.1166/jnn.2009.J058
- 87 R. Sardar, J. W. Park, J. S. Shumaker-Parry, Langmuir 2007, 23 (23), 11883. DOI: 10.1021/la702359g
- 88 R. N. Mitra, P. K. Das, J. Phys. Chem. C 2008, 112 (22), 8159. DOI: 10.1021/jp712106d
- 89 X. Y. Shi, K. Sun, J. R. Baker, J. Phys. Chem. C 2008, 112 (22), 8251. DOI: 10.1021/jp801293a
- 90 M. W. Shen, K. Sun, X. Y. Shi, Curr. Nanosci. 2010, 6 (3), 307.
- 91 Y. W. Zhang, H. S. Peng, W. Huang, Y. F. Zhou, X. H. Zhang, D. Y. Yan, J. Phys. Chem. C 2008, 112 (7), 2330. DOI: 10.1021/jp075436g
- 92 E. Boisselier, A. K. Diallo, L. Salmon, C. Ornelas, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 2010, 132 (8), 2729. DOI: 10.1021/ja909133f
- 93 C. E. Hoppe, M. Lazzari, I. Pardinas-Blanco, M. A. Lopez-Quintela, Langmuir 2006, 22 (16), 7027. DOI: 10.1021/la060885d
- 94 M. Zhou, M. Bron, W. Schuhmann, J. Nanosci. Nanotechnol. 2008, 8 (7), 3465. DOI: 10.1166/jnn.2008.172
- 95 B. Lim, P. H. C. Camargo, Y. N. Xia, Langmuir 2008, 24 (18), 10437. DOI: 10.1021/la801803z
- 96 M. S. Yavuz, W. Y. Li, Y. N. Xia, Chem. Eur. J. 2009, 15 (47), 13181. DOI: 10.1002/chem.200901440
- 97 A. Leiva, C. Saldias, C. Quezada, A. Toro-Labbe, F. J. Espinoza-Beltran, M. Urzua, L. Gargallo, D. Radic, Eur. Polym. J. 2009, 45 (11), 3035. DOI: 10.1016/j.eurpolymj.2009.08.005
- 98 J. Shan, H. Tenhu, Chem. Commun. 2007, 4580. DOI: 10.1039/b707740h
- 99 B. A. Rozenberg, R. Tenne, Prog. Polym. Sci. 2008, 33 (1), 40. DOI: 10.1016/j.progpolymsci.2007.07.004
- 100 Y. Ofir, B. Samanta, V. M. Rotello, Chem. Soc. Rev. 2008, 37 (9), 1814. DOI: 10.1039/b712689c