Prediction of Droplet Velocities and Rain Out in Horizontal Isothermal Free Jet Flows of Air and Viscous Liquid in Stagnant Ambient Air
S. Al Rabadi
Fluid Mechanics Institute, Hamburg University of Technology, Hamburg, Germany
Search for more papers by this authorL. Friedel
Fluid Mechanics Institute, Hamburg University of Technology, Hamburg, Germany
Search for more papers by this authorS. Al Rabadi
Fluid Mechanics Institute, Hamburg University of Technology, Hamburg, Germany
Search for more papers by this authorL. Friedel
Fluid Mechanics Institute, Hamburg University of Technology, Hamburg, Germany
Search for more papers by this authorAbstract
Two-dimensional phase Doppler anemometer measurements of droplet size and velocity conducted under several nozzle conditions and a systematic variation of the air mass flow quality and liquid phase viscosity show that the air entrainment process is enhanced when keeping all test conditions constant except for increasing the Newtonian liquid viscosity above of that of water. A two-zone entrainment model based on a variable two-phase entrainment coefficient is proposed with the normalized axial distance allowing for a change in the jet angle. Thus, the jet perimeter is lower and the breakup length is longer in the case of air/relatively higher viscosity liquid phase. It provides the most accurate reproduction of the experimental droplet velocity in comparison with that of other models in the literature and, hence, is recommended for the prediction of the droplet velocity in the case of two-phase air/liquid phase free jet flow in stagnant ambient air. A model for predicting the droplet rain out, considering the droplet trajectories in the free jet flow, allows also for an adequate reproduction of the experimental data.
References
- 1 S. Al Rabadi, L. Friedel, A. Al Salaymeh, Chem. Eng. Technol. 2007, 30 (1), 71. DOI: 10.1002/ceat.200600233
- 2 R. Clift, J. R. Grace, M. E. Weber, Bubbles, drops and particles, Academic Press, New York 1978.
- 3 R. D. Cohen, Int. J. Multiphase Flow 1994, 20 (1), 211.
- 4 G. E. Cossali, J. Fluid Mech. 2001, 439, 353.
- 5 S. C. Crow, F. H. Champagne, J. Fluid Mech. 1971, 48 (3), 547.
- 6 W. J. A. Dahm, P. E. Dimotakis, J. AIAA 1987, 25 (9), 1216.
- 7 P. K. Das, Chem. Eng. Technol. 1996, 9, 39.
- 8 G. M. Faeth, L. P. Hsiang, P. K. Wu, Int. J. Multiphase Flow 1995, 21 (Suppl. 1), 99.
- 9 A. M. Falcone, J. C. Cataldo, Trans. ASME 2003, 125, 620.
- 10 J. A. Friedman, M. Renksizbulut, Part. Part. Syst. Charact. 1994, 11, 442.
- 11 A. Frohn, N. Roth, Dynamics of Droplets, Springer, Heidelberg 2000.
- 12 J. A. Havens, T. O. Spicer, U.S. Coast Guard Report Nr. CGD2385, Washington DC 1985.
- 13 B. J. Hill, J. Fluid Mech. 1972, 51 (4), 773.
- 14 E. J. Hinch, J. Fluid Mech. 1993, 256, 601.
- 15 J. W. Hoyt, J. J. Taylor, C. D. Runge, J. Fluid Mech. 1974, 63 (4), 635.
- 16 L. P. Hsiang, G. M. Faeth, Int. J. Multiphase Flow 1995, 21 (4), 545.
- 17 H. J. Hussein, S. P. Capp, W. George, J. Fluid Mech. 1994, 258, 31.
- 18 V. Iannello, P. H. Rothe, G. B. Wallis, in Proc. Loss Prevention Symposium, Oslo 1989, 58, 1.
- 19 B. Imine, A. Saber-Bendhina, O. Imine, J. Heat Mass Transfer 2005, 42, 39.
- 20 D. W. Johnson, J. L. Woodward, RELEASE – a model with data to predict aerosol rainout in accidental releases, Center for Chemical Process Safety/AIChE, New York 1999.
- 21 H. J. Khan, Helium jet dispersion to atmosphere, NASA CR 189885, 1986.
- 22 W. T. Kim, S. K. Mitra, X. Li, L. A. Prociw, T. C. J. Hu, Part. Part. Syst. Charact. 2003, 20, 135.
- 23 G. Knubben, Numerical simulation method to predict droplet trajectories for designing industrial systems of IC-engines, Wibro, Eindhoven 1995.
- 24 N. L. Kolev, Exp. Thermal Fluid Sci. 1993, 6, 211.
- 25 K. Krishna et al., J. Loss Prev. Process Ind. 2003, 16, 1.
- 26 J. K. Kuhlman, J. AIAA 1987, 25 (3), 373.
- 27 M. Kumagai, K. Endoh, J. Chem. Eng. Japan 1982, 15 (6), 427.
- 28 T. J. Kuta, M. W. Plesniak, P. E. Sojka, Atomization Sprays 2003, 13, 561.
- 29 H. Langner, Ph.D. Thesis, Technische Universität Hannover 1978.
- 30 A. H. Lefebvre, Part. Part. Syst. Charact. 1989, 6, 176.
- 31 D. Liepmann, M. Gharib, J. Fluid Mech. 1992, 245, 643.
- 32 P. M. Lovalenti, J. F. Brady, J. Fluid Mech. 1993, 256, 561.
- 33 M. Lörcher, Ph.D. Thesis, Technische Universität Hannover 2003.
- 34 S. A. MacGregor, Int. J. Heat Fluid Flow 1991, 12 (3), 279.
- 35 T. G. Malmström, A. T. Kirkpatrick, B. Christensen, K. D. Knappmiller, J. Fluid Mech. 1997, 246, 363.
- 36
J. M. Mandhane,
G. A. Gregory,
K. Aziz,
Int. J. Multiphase Flow
1974,
1,
537.
10.1016/0301-9322(74)90006-8 Google Scholar
- 37 A. Mansour, N. Chigier, J. Non-Newtonian Fluid Mech. 1995, 58, 161.
- 38 E. J. McKeogh, D. A. Ervine, Chem. Eng. Sci. 1981, 36, 1161.
- 39 E. E. Michaelides, J. Fluids Eng. 1997, 119, 233.
- 40 E. E. Michaelides, Z. G. Feng, Int. J. Multiphase Flow 1995, 21 (2), 315.
- 41 M. Piesche, M. Breitling, S. Schütz, Chem. Ing. Tech. 2005, 77 (6), 742. DOI: 10.1002/cite.200500020
- 42 M. Pilch, C. A. Erdman, Int. J. Multiphase Flow 1987, 13 (6), 741.
- 43 W. M. Pitts, Exp. Fluids 1991, 11, 12. & 135.
- 44 W. R. Quinn, Exp. Fluids 2005, 39, 111.
- 45 R. D. Reitz, F. V. Bracco, Phys. Fluids 1982, 25 (10), 1730.
- 46 F. P. Ricou, D. B. Spalding, J. Fluid Mech. 1961, 11, 21.
- 47 K. A. Sallam, Z. Dai, G. M. Faeth, Int. J. Multiphase Flow 1999, 25, 1161.
- 48 E. U. Schlünder, Z. Flugwiss. 1971, 19 (3), 108.
- 49 H. Seifert, H. Giesbrecht, W. Leuckel, Ger. Chem. Eng. 1984, 7, 126.
- 50 W. A. Sirignano, Fluid dynamics and transport of droplet and sprays, Cambridge University Press, Cambridge 1999.
- 51 L. Song, A. John, J. Fluids Eng. 2003, 125, 605.
- 52 R. Surma, Ph.D. Thesis, Technische Universität Hamburg 2005.
- 53 H. E. Snyder, R. D. Reitz, J. Fluid Mech. 1998, 375, 363.
- 54 H. Teng, C. M. Kinoshita, S. M. Masutani, Int. J. Multiphase Flow 1995, 21 (1), 129.
- 55 T. G. Theofanous, G. L. Li, T. N. Dinh, J. Fluids Eng. 2004, 126, 516.
- 56 L. K. Tseng, P. K. Wu, G. M. Faeth, J. Prop. Power 1992, 8, 1157.
- 57 E. Van de Sande, J. M. Smith, Chem. Eng. Sci. 1973, 28, 1161.
- 58 G. K. Vogel, Physik, Springer, Berlin 1982.
- 59 D. M. Webber, J. S. Kukkonen, in European Seminar on the pressurized storage of flammable liquids, London 1988.
- 60 J. L. Woodward, J. Loss Prev. Process Ind. 1989, 2, 22.
- 61 D. C. Y. Wong et al., Int. J. Multiphase Flow 2004, 30, 499.
- 62 I. Wygnanski, H. Fiedler, J. Fluid Mech. 1969, 38 (3), 577.
- 63 A. L. Yarin, Free liquid jets and films, hydrodynamics and rheology, John Wiley & Sons, New York 1993.