Cereal phenolic contents as affected by variety and environment
Corresponding Author
Shiwangni Rao
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Correspondence
Shiwangni Rao, ARC ITTC for Functional Grains, Charles Sturt University, Locked Bag 588, Bldg. 289, Room 2006, Wagga Wagga, NSW 2678, Australia
Email: [email protected]
Search for more papers by this authorLachlan J. Schwarz
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorAbishek B. Santhakumar
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorKenneth A. Chinkwo
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorChristopher L. Blanchard
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorCorresponding Author
Shiwangni Rao
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Correspondence
Shiwangni Rao, ARC ITTC for Functional Grains, Charles Sturt University, Locked Bag 588, Bldg. 289, Room 2006, Wagga Wagga, NSW 2678, Australia
Email: [email protected]
Search for more papers by this authorLachlan J. Schwarz
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorAbishek B. Santhakumar
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorKenneth A. Chinkwo
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorChristopher L. Blanchard
School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Search for more papers by this authorAbstract
Background and objectives
Phenolic compounds found in cereals have been shown to possess antioxidant activity that has ensured an increased interest in their health beneficial properties. This review analyzed studies investigating the phenolic content of rice, barley, oats, and sorghum grown in different geographical locations and the effect environmental factors have on them.
Findings
From the studies reviewed, it was identified that whole grain pigmented cereals exhibited phenolic profiles with polyphenols such as anthocyanins, proanthocyanidins, and their derivatives that translated to higher total phenolic content and antioxidant activity. Variation in phenolic content was also observed in cereal species grown in different geographical locations and when subjected to variable levels of salinity, water, and temperature.
Conclusions
Despite the increasing body of knowledge on the phenolic content of cereals, studies focusing on the effect of environment on cereal phenolic content are limited; hence, more research is warranted.
Significance and novelty
This review examines literature to provide a holistic understanding of how environment plays a role in the regulation of phenolic metabolites in cereals such as oats with a focus on pigmented varieties of rice, barley, and sorghum.
CONFLICT OF INTEREST
S.Rao, Lachlan Schwarz, Abishek B Santhakumar, Kenneth A Chinkwo, and Christopher L Blanchard have no conflict of interests to declare.
REFERENCES
- Asensi, M., Ortega, A., Mena, S., Feddi, F., & Estrela, J. M. (2011). Natural polyphenols in cancer therapy. Critical Reviews in Clinical Laboratory Sciences, 48(5–6), 197–216. https://doi.org/10.3109/10408363.2011.631268
- Awika, J. M., Rooney, L. W., & Waniska, R. D. (2004). Properties of 3-deoxyanthocyanins from sorghum. Journal of Agricultural and Food Chemistry, 52(14), 4388–4394. https://doi.org/10.1021/jf049653f
- Awika, J. M., Yang, L. Y., Browning, J. D., & Faraj, A. (2009). Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT-Food Science and Technology, 42(6), 1041–1046. https://doi.org/10.1016/j.lwt.2009.02.003
- Ayala-Soto, F. E., Serna-Saldivar, S. O., Welti-Chanes, J., & Gutierrez-Uribe, J. A. (2015). Phenolic compounds, antioxidant capacity and gelling properties of glucoarabinoxylans from three types of sorghum brans. Journal of Cereal Science, 65, 277–284. https://doi.org/10.1016/j.jcs.2015.08.004
- Bergqvist, J., Dokoozlian, N., & Ebisuda, N. (2001). Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. American Journal of Enology and Viticulture, 52(1), 1–7.
- Beta, T., & Corke, H. (2001). Genetic and environmental variation in sorghum starch properties. Journal of Cereal Science, 34(3), 261–268. https://doi.org/10.1006/jcrs.2000.0379
- Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology, 11(5), 705–719.
- Bonoli, M., Verado, V., Marconi, E., & Caboni, M. F. (2004). Antioxidant phenols in barley (Hordeum vulgare L.) flour: Comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. Journal of Agricultural and Food Chemistry, 52, 5195–5200. https://doi.org/10.1021/jf040075c
- Butsat, S., & Siriamornpun, S. (2010). Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chemistry, 119(2), 606–613. https://doi.org/10.1016/j.foodchem.2009.07.001
- Carbonneau, M. A., Cisse, M., Mora-Soumille, N., Dairi, S., Rosa, M., Michel, F., … Dangles, O. (2014). Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Cote d'Ivoire's red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests. Food Chemistry, 145, 701–709. https://doi.org/10.1016/j.foodchem.2013.07.025
- Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1–9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
- Chatthongpisut, R., Schwartz, S. J., & Yongsawatdigul, J. (2015). Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells. Food Chemistry, 188, 99–105. https://doi.org/10.1016/j.foodchem.2015.04.074
- Chen, C. Y. O., Milbury, P. E., Collins, F. W., & Blumberg, J. B. (2007). Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. Journal of Nutrition, 137(6), 1375–1382. https://doi.org/10.1093/jn/137.6.1375
- Chen, C. Y., Milbury, P. E., Kwak, H. K., Collins, F. W., Samuel, P., & Blumberg, J. B. (2004). Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. Journal of Nutrition, 134(6), 1459–1466. https://doi.org/10.1093/jn/134.6.1459
- Choi, J., Jiang, X. J., Jeong, J. B., & Lee, S. H. (2014). Anticancer activity of protocatechualdehyde in human breast cancer cells. Journal of Medicinal Food, 17(8), 842–848. https://doi.org/10.1089/jmf.2013.0159
- Chopin, J., Dellamonica, G., Bouillant, M. L., Besset, A., Popovici, G., & Weissenbock, G. (1977). C-Glycosylflavones from Avena sativa. Phytochemistry, 16(12), 2041–2043. https://doi.org/10.1016/0031-9422(77)80131-3
- Chu, Y. F., Wise, M. L., Gulvady, A. A., Chang, T., Kendra, D. F., van Klinken, B. J. W., … O'Shea, M. (2013). In vitro antioxidant capacity and anti-inflammatory activity of seven common oats. Food Chemistry, 139(1–4), 426–431. https://doi.org/10.1016/j.foodchem.2013.01.104
- Collins, F. W. (1989). Oat phenolics - avenanthramides, novel substituted n-cinnamoylanthranilate alkaloids from oat groats and hulls. Journal of Agricultural and Food Chemistry, 37(1), 60–66. https://doi.org/10.1021/jf00085a015
- Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163. https://doi.org/10.1186/1471-2229-11-163
- Daiponmak, W., Theerakulpisut, P., Thanonkao, P., Vanavichit, A., & Prathepha, P. (2010). Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. ScienceAsia, 36(4), 286–291. https://doi.org/10.2306/scienceasia1513-1874.2010.36.286
- De Mira, N. V. M., Massaretto, I. L., Pascual, C. D. S. C. I., & Lanfer Marquez, U. M. (2009). Comparative study of phenolic compounds in different Brazilian rice (Oryza sativa L.) genotypes. Journal of Food Composition and Analysis, 22(5), 405–409. https://doi.org/10.1016/j.jfca.2008.06.012
- Delcour, A. J., & Hoseney, R. C. (2010). Chapter 1: Structure of cereals. In J. A. Delcour & R. C. Hoseney (Eds.), Principles of cereal science and technology (pp. 1–22). St Paul, MN: AACC International, Inc. https://doi.org/10.1094/9781891127632
10.1094/9781891127632.001 Google Scholar
- Delgoda, R., & Murray, J. E. (2017). Chapter 7 - evolutionary perspectives on the role of plant secondary metabolites. In R. Delgoda (Ed.), Pharmacognosy (pp. 93–100). Boston, MA: Academic Press. https://doi.org/10.1016/B978-0-12-802104-0.00007-X
10.1016/B978-0-12-802104-0.00007-X Google Scholar
- Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., … Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 516–517). Cambridge, UK: Cambridge University Press.
- Dicko, M. H., Hilhorst, R., Gruppen, H., Traore, A. S., Laane, C., van Berkel, W. J. H., & Voragen, A. G. J. (2002). Comparison of content in phenolic compounds, polyphenol oxidase, and peroxidase in grains of fifty sorghum varieties from Burkina Faso. Journal of Agricultural and Food Chemistry, 50(13), 3780–3788. https://doi.org/10.1021/jf011642o
- Dimberg, L. H., Molteberg, E. L., Solheim, R., & Frolich, W. (1996). Variation in oat groats due to variety, storage and heat treatment.1. Phenolic compounds. Journal of Cereal Science, 24(3), 263–272. https://doi.org/10.1006/jcrs.1996.0058
- Dimberg, L. H., Theander, O., & Lingnert, H. (1993). Avenanthramides - a group of phenolic antioxidants in oats. Cereal Chemistry, 70(6), 637–641.
- Downey, M. O., Harvey, J. S., & Robinson, S. P. (2004). The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 10(1), 55–73.
- Duke, J. A. (1992). Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton, FL: CRC Press.
- Dykes, L., Rooney, L. W., Waniska, R. D., & Rooney, W. L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry, 53(17), 6813–6818. https://doi.org/10.1021/jf050419e
- Ehrenbergerova, J., Belcredi, N. B., Psota, V., Hrstkova, P., Cerkal, R., & Newman, C. W. (2008). Changes caused by genotype and environmental conditions in beta-glucan content of spring barley for dietetically beneficial human nutrition. Plant Foods for Human Nutrition, 63(3), 111–117. https://doi.org/10.1007/s11130-008-0079-7
- Emmons, C. L., & Peterson, D. M. (1999). Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chemistry, 76(6), 902–906. https://doi.org/10.1094/CCHEM.1999.76.6.902
- Emmons, C. L., & Peterson, D. M. (2001). Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop Science, 41(6), 1676–1681. https://doi.org/10.2135/cropsci2001.1676
- Emmons, C. L., Peterson, M. D., & Gregory, L. P. (2001). Antioxidant capacity of oats (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. Journal of Agricultural and Food Chemistry, 47, 4894–4898.
- Emmons, C. L., Peterson, D. M., & Paul, G. L. (1999). Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. Journal of Agricultural and Food Chemistry, 47(12), 4894–4898. https://doi.org/10.1021/jf990530i
- Gamel, T., & Abdel-Aal, E. M. (2012). Phenolic acids and antioxidant properties of barley wholegrain and pearling fractions. Agricultural and Food Science, 21(2), 14.
- Gangopadhyay, N., Hossain, M. B., Rai, D. K., & Brunton, N. P. (2015). A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules, 20(6), 10884–10909. https://doi.org/10.3390/molecules200610884
- Gangopadhyay, N., Rai, D. K., Brunton, N. P., Gallagher, E., & Hossain, M. B. (2016). Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain. Food Chemistry, 210, 212–220. https://doi.org/10.1016/j.foodchem.2016.04.098
- Giada, M. D. L. R. (2013). Food phenolic compounds: Main classes, sources and their antioxidant power. In J. A. Morales-Gonzalez (Ed.), Oxidative stress and chronic degenerative diseases: A role for antioxidant (pp. 87–112). Rijeka, Croatia: InTech.
10.5772/51687 Google Scholar
- Givens, D. I., Davies, T. W., & Laverick, R. M. (2004). Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Animal Feed Science and Technology, 113(1–4), 169–181. https://doi.org/10.1016/j.anifeedsci.2003.11.009
- Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227–255. https://doi.org/10.1080/07352689991309207
- Glenn, E. P., Brown, J. J., & O'Leary, J. W. (1998). Irrigating crops with seawater. Scientific American, 279, 76–81. https://doi.org/10.1038/scientificamerican0898-76
- Goufo, P., Pereira, J., Figueiredo, N., Oliveira, M. B. P. P., Carranca, C., Rosa, E. A. S., & Trindade, H. (2014). Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). Journal of Cereal Science, 59(1), 15–24. https://doi.org/10.1016/j.jcs.2013.10.013
- Goufo, P., & Trindade, H. (2014). Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, c-oryzanol, and phytic acid. Food Science and Nutrition, 2, 75–104. https://doi.org/10.1002/fsn3.86
- Goupy, P., Hugues, M., Boivin, P., & Amiot, M. J. (1999). Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. Journal of the Science of Food and Agriculture, 79, 1625–1634. https://doi.org/10.1002/(ISSN)1097-0010
10.1002/(SICI)1097-0010(199909)79:12<1625::AID-JSFA411>3.0.CO;2-8 CAS Web of Science® Google Scholar
- Gunaratne, A., Wu, K., Li, D., Bentota, A., Corke, H., & Cai, Y. Z. (2013). Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chemistry, 138(2–3), 1153–1161. https://doi.org/10.1016/j.foodchem.2012.11.129
- Gündüz, K., & Özdemir, E. (2014). The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chemistry, 155, 298–303.
- Hahn, D. H., Faubion, J. M., & Rooney, L. W. (1983). Sorghum phenolic-acids, their high-performance liquid-chromatography separation and their relation to fungal resistance. Cereal Chemistry, 60(4), 255–259.
- Harborne, J. B. (1980). Plant phenolics. In E. A. Bell, B. V. Charlwood & B. Archer (Eds.), Secondary plant products (pp. 330–402). Berlin, Germany: Springer-Verlag.
10.1007/978-3-642-67360-3_14 Google Scholar
- Hartley, R. D. (1973). Lignin carbohydrate linkages in plant cell-walls.1. Carbohydrate esters of ferulic acid as components of cell-walls of lolium-multiflorum. Phytochemistry, 12(3), 661–665. https://doi.org/10.1016/S0031-9422(00)84460-X
- Intergovernmental Panel on Climate Change. (2007). Summary for policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 13–14). Cambridge, UK: Cambridge University Press.
10.1017/CBO9780511546013.003 Google Scholar
- Jeong, J. B., Hong, S. C., & Jeong, H. J. (2009). 3,4-Dihydroxybenzaldehyde purified from the barley seeds (Hordeum vulgare) inhibits oxidative DNA damage and apoptosis via its antioxidant activity. Phytomedicine, 16(1), 85–94. https://doi.org/10.1016/j.phymed.2008.09.013
- Jeong, J. B., & Lee, S. H. (2013). Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochemical and Biophysical Research Communications, 430(1), 381–386. https://doi.org/10.1016/j.bbrc.2012.11.018
- Khoddami, A., Truong, H. H., Liu, S. Y., Roberts, T. H., & Selle, P. H. (2015). Concentrations of specific phenolic compounds in six red sorghums influence nutrient utilisation in broiler chickens. Animal Feed Science and Technology, 210, 190–199. https://doi.org/10.1016/j.anifeedsci.2015.09.029
- Kim, M. J., Hyun, J. N., Kim, J. A., Park, J. C., Kim, M. Y., Kim, J. G., … Chung, I. M. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 55(12), 4802–4809. https://doi.org/10.1021/jf0701943
- Kong, S., & Lee, J. (2010). Antioxidants in milling fractions of black rice cultivars. Food Chemistry, 120(1), 278–281. https://doi.org/10.1016/j.foodchem.2009.09.089
- Lee, J. R., Lee, M. H., Eo, H. J., Park, G. H., Song, H. M., Kim, M. K., … Jeong, J. B. (2014). The contribution of activating transcription factor 3 to apoptosis of human colorectal cancer cells by protocatechualdehyde, a naturally occurring phenolic compound. Archives of Biochemistry and Biophysics, 564, 203–210. https://doi.org/10.1016/j.abb.2014.10.005
- Li, X., Li, M., Ling, A., Hu, X., Ma, Z., Liu, L., & Li, Y. (2017). Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. Journal of Cereal Science, 73(Supplement C), 130–137. https://doi.org/10.1016/j.jcs.2016.12.005
- Liu, Q., & Yao, H. (2007). Antioxidant activities of barley seeds extracts. Food Chemistry, 102(3), 732–737. https://doi.org/10.1016/j.foodchem.2006.06.051
- Madhujith, T., & Shahidi, F. (2007). Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. Journal of Agriculture and Food Chemistry, 55(13), 5018–5024. https://doi.org/10.1021/jf070072a
- Madhujith, T., & Shahidi, F. (2009). Antioxidant potential of barley as affected by alkaline hydrolysis and release of insoluble-bound phenolics. Food Chemistry, 117(4), 615–620. https://doi.org/10.1016/j.foodchem.2009.04.055
- Massaretto, I. L., Alves, M. F. M., de Mira, N. V. M., Carmona, A. K., & Marquez, U. M. L. (2011). Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. Journal of Cereal Science, 54(2), 236–240. https://doi.org/10.1016/j.jcs.2011.06.006
- Min, B., Gu, L., McClung, A. M., Bergman, C. J., & Chen, M. (2012). Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chemistry, 133, 715–722. https://doi.org/10.1016/j.foodchem.2012.01.079
- Minh, L. T., Khang, D. T., Ha, P. T. T., Tuyen, P. T., Minh, T. N., Quan, N. V., & Xuan, T. D. (2016). Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.). International Letters of Natural Sciences, 57, 1–10. https://doi.org/10.18052/www.scipress.com/ILNS.57.1
- Molina-Cano, J. L., Francesch, M., Perez-Vendrell, A. M., Ramo, T., Voltas, J., & Brufau, J. (1997). Genetic and environmental variation in malting and feed quality of barley. Journal of Cereal Science, 25(1), 37–47. https://doi.org/10.1006/jcrs.1996.0067
- Mori, K., Sugaya, S., & Gemma, H. (2005). Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae, 105(3), 319–330. https://doi.org/10.1016/j.scienta.2005.01.032
- Morton, L. W., Caccetta, R. A., Puddey, I. B., & Croft, K. D. (2000). Chemistry and biological effects of dietary phenolic compounds: Relevance to cardiovascular disease. Clinical and Experimental Pharmacology and Physiology, 27(3), 152–159. https://doi.org/10.1046/j.1440-1681.2000.03214.x
- Nguyen, P. H., Zhao, B. T., Lee, J. H., Kim, Y. H., Min, B. S., & Woo, M. H. (2015). Isolation of benzoic and cinnamic acid derivatives from the grains of Sorghum bicolor and their inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. Food Chemistry, 168, 512–519. https://doi.org/10.1016/j.foodchem.2014.06.119
- Oyama, T., Yasui, Y., Sugie, S., Koketsu, M., Watanabe, K., & Tanaka, T. (2009). Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice. Cancer Prevention Research, 2(12), 1031–1038. https://doi.org/10.1158/1940-6207.CAPR-09-0061
- Peterlunger, E., Sivilotti, P., & Colussi, V. (2005). Water stress increased polyphenolic quality in ‘Merlot’ grapes. Proceedings of the Seventh International Symposium on Grapevine Physiology and Biotechnology(689), 293-300.
- Peterson, D. M., Emmons, C. L., & Hibbs, A. H. (2001). Phenolic antioxidants and antioxidant activity in pearling fractions of oat groats. Journal of Cereal Science, 33(1), 97–103. https://doi.org/10.1006/jcrs.2000.0347
- Peterson, D. M., Wesenberg, D. M., Burrup, D. E., & Erickson, C. A. (2005). Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science, 45(4), 1249–1255. https://doi.org/10.2135/cropsci2004.0063
- Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37–43. https://doi.org/10.1016/j.envexpbot.2012.01.007
- Petrie, P. R., Cooley, N. M., & Clingeleffer, P. R. (2004). The effect of post-veraison water deficit on yield components and maturation of irrigated Shiraz (Vitis vinifera L.) in the current and following season. Australian Journal of Grape and Wine Research, 10(3), 203–215.
- Popovici, G., Weissenbock, G., Bouillant, M. L., Dellamonica, G., & Chopin, J. (1977). Isolation and characterization of flavonoids from Avena sativa L. Zeitschrift Fur Pflanzenphysiologie, 85(2), 103–115. https://doi.org/10.1016/S0044-328X(77)80284-5
- Qiu, Y., Liu, Q., & Beta, T. (2010). Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chemistry, 121(1), 140–147. https://doi.org/10.1016/j.foodchem.2009.12.021
- Quinde-Axtell, Z., & Baik, B. K. (2006). Phenolic compounds of barley grain and their implication in food product discoloration. Journal of Agricultural and Food Chemistry, 54(26), 9978–9984. https://doi.org/10.1021/jf060974w
- Rao, S., Callcott, E. T., Santhakumar, A. B., Chinkwo, K. A., Vanniasinkam, T., Luo, J., & Blanchard, C. (2018). Profiling polyphenol composition and antioxidant activity in Australian-grown rice using UHPLC-Online ABTS system. Journal of Cereal Science, 80, 174–179. https://doi.org/10.1016/j.jcs.2018.02.011
- Rao, S., Taylor, M., & Jokhan, A. (2013). A rapid screening methodology for salt tolerance in giant swamp taro (Cyrtosperma merkusii) and its diversity. In F. Massawe, S. Mayes, & P. Alderson (Eds.), II international symposium on underutilized plant species: Crops for the future-beyond food security 979 (pp. 319–325). Leuven, Belgium: International Society for Horticultural Science (ISHS).
10.17660/ActaHortic.2013.979.33 Google Scholar
- Santhakumar, A. B., Bulmer, A. C., & Singh, I. (2014). A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. Journal of Human Nutrition and Dietetics, 27(1), 1–21. https://doi.org/10.1111/jhn.12177
- Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. Journal of Nutrition, 130(8), 2073s–2085s. https://doi.org/10.1093/jn/130.8.2073S
- Scarpa, E. S., Antonini, E., Palma, F., Mari, M., & Ninfali, P. (2017). Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. European Journal of Nutrition, 57, 1381–1395.
- Sedghi, M., Golian, A., Soleimani-Roodi, P., Ahmadi, A., & Aami-Azghadi, M. (2012). Relationship between color and tannin content in sorghum grain: Application of image analysis and artificial neural network. Brazilian Journal of Poultry Science, 14(1), 57–62. https://doi.org/10.1590/S1516-635X2012000100010
- Shao, Y., & Bao, J. (2015). Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chemistry, 180, 86–97. https://doi.org/10.1016/j.foodchem.2015.02.027
- Shao, Y., Tang, F., Huang, Y., Xu, F., Chen, Y., Tong, C., … Bao, J. (2014). Analysis of genotype × environment interactions for polyphenols and antioxidant capacity of rice by association mapping. Journal of Agricultural and Food Chemistry, 62(23), 5361–5368. https://doi.org/10.1021/jf500951e
- Shao, Y., Xu, F., Sun, X., Bao, J., & Beta, T. (2014a). Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59, 211–218. https://doi.org/10.1016/j.jcs.2014.01.004
- Shao, Y., Xu, F., Sun, X., Bao, J., & Beta, T. (2014b). Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry, 143, 90–96. https://doi.org/10.1016/j.foodchem.2013.07.042
- Singh, R., De, S., & Belkheir, A. (2013). Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview. Critical Reviews in Food Science and Nutrition, 53(2), 126–144. https://doi.org/10.1080/10408398.2010.526725
- Sompong, R., Siebenhandl-Ehn, S., Linsberger-Martin, G., & Berghofer, E. (2011). Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, 124(1), 132–140. https://doi.org/10.1016/j.foodchem.2010.05.115
- Sosulski, F., Krygier, K., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic-acids.3. Composition of phenolic-acids in cereal and potato flours. Journal of Agricultural and Food Chemistry, 30(2), 337–340. https://doi.org/10.1021/jf00110a030
- Stewart, A. J., Chapman, W., Jenkins, G. I., Graham, I., Martin, T., & Crozier, A. (2001). The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell & Environment, 24, 1189–1197. https://doi.org/10.1046/j.1365-3040.2001.00768.x
- Suganyadevi, P., Saravanakumar, K. M., & Mohandas, S. (2013). The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sciences, 92(6–7), 379–382. https://doi.org/10.1016/j.lfs.2013.01.006
- Sur, R., Nigam, A., Grote, D., Liebel, F., & Southall, M. D. (2008). Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Archives of Dermatological Research, 300(10), 569–574. https://doi.org/10.1007/s00403-008-0858-x
- Tomás-Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853–876. https://doi.org/10.1002/jsfa.885
- Umnajkitikorn, K., Faiyue, B., & Saengnil, K. (2013). Enhancing antioxidant properties of germinated thai rice (Oryza sativa L.) cv. Kum doi saket with salinity. Rice Research: Open Access, 1(1), 1–8.
10.4172/2375-4338.1000103 Google Scholar
- Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry, 49(10), 4977–4982. https://doi.org/10.1021/jf0106244
- Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Oxford, UK: Blackwell Scientific Publication.
- Wu, G., Johnson, K. S., Bornman, J. F., Bennett, S. J., Clarke, M. W., Singh, V., & Fang, Z. (2016). Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Scientific Reports, 6, 1–10.
- Xing, Y. M., & White, P. J. (1997). Identification and function of antioxidants from oat greats and hulls. Journal of the American Oil Chemists Society, 74(3), 303–307. https://doi.org/10.1007/s11746-997-0141-x
- Yamane, T., Jeong, S. T., Goto-Yamamoto, N., Koshita, Y., & Kobayashi, S. (2006). Effects of temperature on anthocyanin biosynthesis in grape berry skins. American Journal of Enology and Viticulture, 57(1), 54–59.
- Yang, Q. M., Pan, X. H., Kong, W. B., Yang, H., Su, Y. D., Zhang, L., … Liu, G. A. (2010). Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chemistry, 118(1), 84–89.
- Yoshida, S., & Hara, T. (1977). Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Science and Plant Nutrition, 23(1), 93–107. https://doi.org/10.1080/00380768.1977.10433026
10.1080/00380768.1977.10433026 Google Scholar
- Yoshida, A., Sonoda, K., Nogata, Y., Nagamine, T., Sato, M., Oki, T., … Ohta, H. (2010). Determination of free and bound phenolic acids, and evaluation of antioxidant activities and total polyphenolic contents in selected pearled barley. Food Science and Technology Research, 16(3), 215–224. https://doi.org/10.3136/fstr.16.215
- Yu, L., Li, G., Li, M., Xu, F., Beta, T., & Bao, J. (2016). Genotypic variation in phenolic acids, vitamin E and fatty acids in whole grain rice. Food Chemistry, 197, 776–782.
- Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chemistry, 87, 401–406. https://doi.org/10.1016/j.foodchem.2003.12.015
- Zhu, Y., Li, T., Fu, X., Abbasi, A. M., Zheng, B., & Liu, R. H. (2015). Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). Journal of Functional Foods, 19, 439–450. https://doi.org/10.1016/j.jff.2015.09.053