Process Intensification Strategies for the Production of Biodiesel—A Review
Corresponding Author
Sravanthi Veluturla
Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, MSRIT Post, Bangalore, 560054 India
E-mail: [email protected]
Search for more papers by this authorSaranya Ravi
Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, MSRIT Post, Bangalore, 560054 India
Search for more papers by this authorCorresponding Author
Sravanthi Veluturla
Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, MSRIT Post, Bangalore, 560054 India
E-mail: [email protected]
Search for more papers by this authorSaranya Ravi
Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, MSRIT Post, Bangalore, 560054 India
Search for more papers by this authorAbstract
The need of process intensification (PI) strategies for biodiesel production focuses on enhancing the efficiency, sustainability, and economic viability of the process. The PI-transformative approach to biodiesel production aligns with green chemistry principles and promotes higher yields and cost-effectiveness. The production of biodiesel from second-generation feedstocks, with an emphasis on selectivity, yield, and efficiency, is extensively discussed in this abstract. This comprehensive review methodically describes the various classes of PI technologies, including microwave, ultrasonic, reactive distillation, and microreactors for biodiesel production. It also describes about the recent advancements in PI technologies, emphasizing strategies for improving efficiency and sustainability. The review also highlights the challenges possessed by these technologies. The present review supports in the selection of a more ecologically friendly intensification technology for the good-yield synthesis of biodiesel, facilitating process scaling up.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. Demirbas, Prog. Energy Combust. Sci. 2007, 33 (1), 1–18. DOI: https://doi.org/10.1016/j.pecs.2006.06.001
- 2K. Rajakumari, M. Abirla, Res. J. Pharm. Technol. 2019, 12 (1), 403. DOI: https://doi.org/10.5958/0974-360X.2019.00073.8
10.5958/0974-360X.2019.00073.8 Google Scholar
- 3A. Elbehri, A. Segerstedt, P. Liu, Biofuels Sustainability Challenge: A Global Assess. Sustainability Issues, Trends Policies Biofuels Relat. Feedstocks 2013.
- 4A. Karmakar, S. Karmakar, S. Mukherjee, Bioresour. Technol. 2010, 101 (19), 7201–7210. DOI: https://doi.org/10.1016/j.biortech.2010.04.079
- 5M. V. Rodionova, R. S. Poudyal, I. Tiwari, R. A. Voloshin, S. K. Zharmukhamedov, H. G. Nam, B. K. Zayadan, B. D. Bruce, H. J. M. Hou, S. I. Allakhverdiev, Int. J. Hydrogen Energy 2017, 42 (12), 8450–8461. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.125
- 6B. Lippke, M. E. Puettmann, L. Johnson, R. Gustafson, R. Venditti, P. Steele, J. F. Katers, A. Taylor, T. A. Volk, E. Oneil, K. Skog, E. Budsberg, J. Daystar, J. Caputo, For. Prod. J. 2012, 62 (4), 296–304. DOI: https://doi.org/10.13073/12-00021.1
- 7Z. Qiu, L. Zhao, L. Weatherley, Chem. Eng. Process. 2010, 49 (4), 323–330. DOI: https://doi.org/10.1016/j.cep.2010.03.005
- 8J. Huang, J. Wang, Z. Huang, T. Liu, H. Li, Bioresour. Technol. 2023, 369, 128390. DOI: https://doi.org/10.1016/j.biortech.2022.128390
- 9J. Huang, T. Liu, K. Wang, Z. Huang, J. Wang, S. L. Rokhum, H. Li, Environ. Chem. Lett. 2024, 22 (4), 1607–1613. DOI: https://doi.org/10.1007/s10311-024-01723-5
- 10H. Luo, Z. Zhang, Z. Pei, J. Tan, J. Huang, J. Yuan, J. Chen, P. Meng, X. Liu, H. Li, Algal Res. 2025, 85, 103856. DOI: https://doi.org/10.1016/j.algal.2024.103856
- 11Y. Li, K. Zhu, Y. Jiang, L. Chen, H. Zhang, H. Li, S. Yang, Fuel Process. Technol. 2023, 239, 107558. DOI: https://doi.org/10.1016/j.fuproc.2022.107558
- 12L. F. Chuah, J. J. Klemeš, S. Yusup, A. Bokhari, M. M. Akbar, J. Clean Prod. 2017, 146, 181–193. DOI: https://doi.org/10.1016/j.jclepro.2016.05.017
- 13A. S. Badday, A. Z. Abdullah, K. T. Lee, M. S. Khayoon, Renew. Sustainable Energy Rev. 2012, 16 (7), 4574–4587. DOI: https://doi.org/10.1016/j.rser.2012.04.057..
- 14Y. Natarajan, A. Nabera, S. Salike, V. Dhanalakshmi Tamilkkuricil, S. Pandian, M. Karuppan, A. Appusamy, Chem. Eng. Process.–Process Intensif. 2019, 136, 163–176. DOI: https://doi.org/10.1016/j.cep.2018.12.008
- 15K. Y. Wong, J.-H. Ng, C. T. Chong, S. S. Lam, W. T. Chong, Renew. Sustainable Energy Rev. 2019, 116, 109399. DOI: https://doi.org/10.1016/j.rser.2019.109399
- 16A. P. Harvey, J. G. M. Lee, in Comprehensive Renewable Energy, Elsevier 2012, 5, 205–215. DOI: https://doi.org/10.1016/B978-0-08-087872-0.00516-3
10.1016/B978-0-08-087872-0.00516-3 Google Scholar
- 17M. Gojun, M. Bačić, A. Ljubić, A. Šalić, B. Zelić, Micromachines (Basel) 2020, 11 (5), 457. DOI: https://doi.org/10.3390/mi11050457
- 18P. P. Oh, H. L. N. Lau, J. Chen, M. F. Chong, Y. M. Choo, Renew. Sustainable Energy Rev. 2012, 16 (7), 5131–5145. DOI: https://doi.org/10.1016/j.rser.2012.05.014
- 19R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M. Hidalgo, D. Luna, J. M. Marinas, A. A. Romero, Energy Environ. Sci. 2008, 1 (5), 542. DOI: https://doi.org/10.1039/b807094f
- 20H. K. Jeswani, A. Chilvers, A. Azapagic, Proc. Royal Soc. A: Math., Phys. Eng. Sci. 2020, 476 (2243), 20200351. DOI: https://doi.org/10.1098/rspa.2020.0351
- 21B. M. A. Martin, N. Biotechnol. 2010, 27 (5), 596–608. DOI: https://doi.org/10.1016/j.nbt.2010.06.010
- 22S. N. Naik, V. V. Goud, P. K. Rout, A. K. Dalai, Renew. Sustainable Energy Rev. 2010, 14 (2), 578–597. DOI: https://doi.org/10.1016/j.rser.2009.10.003
- 23R. E. H. Sims, W. Mabee, J. N. Saddler, M. Taylor, Bioresour. Technol. 2010, 101 (6), 1570–1580. DOI: https://doi.org/10.1016/j.biortech.2009.11.046
- 24G. Dragone, B. Fernandes, A. A. Vicente, J. A. Teixeira, Curr. Res., Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1355–1366.
- 25A. Li, B. Antizar-Ladislao, M. Khraisheh, Bioprocess. Biosyst. Eng. 2007, 30 (3), 189–196. DOI: https://doi.org/10.1007/s00449-007-0114-3
- 26P. V. C. Medeiros, P. H. M. Theophilo, G. S. Lopes, L. P. D. Ribeiro, Ecletica Quim. 2023, 48 (2), 22–34. DOI: https://doi.org/10.26850/1678-4618eqj.v48.2.2023.p22-34
- 27L. R. Lynd, M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J. D. McMillan, J. Sheehan, C. E. Wyman, Nat. Biotechnol. 2008, 26 (2), 169–172. DOI: https://doi.org/10.1038/nbt0208-169
- 28T. E. Wirth, Innovations: Technol., Governance, Globalization 2007, 2 (4), 107–115. DOI: https://doi.org/10.1162/itgg.2007.2.4.107
10.1162/itgg.2007.2.4.107 Google Scholar
- 29W. E. Tyner, F. Taheripour, in Plants and BioEnergy, Springer, New York, New York, NY 2014.
10.1007/978-1-4614-9329-7_3 Google Scholar
- 30A. A. Khan, in Energy Security and Development, Springer India, New Delhi 2015.
- 31C. E. Wyman, Bioresour. Technol. 1994, 50 (1), 3–15.
- 32F. J. Keil, Rev. Chem. Eng. 2018, 34 (2), 135–200. DOI: https://doi.org/10.1515/revce-2017-0085
- 33L. F. Chuah, J. J. Klemeš, A. Bokhari, S. Asif, Y. W. Cheng, C. C. Chong, in P. L. Biofuels and Biorefining, Elsevier, 2022, 2, 87–116. DOI: https://doi.org/10.1016/B978-0-12-824117-2.00009-0
10.1016/B978-0-12-824117-2.00009-0 Google Scholar
- 34J. L. Stephen, B. Periyasamy, Fuel 2018, 214, 623–633. DOI: https://doi.org/10.1016/j.fuel.2017.11.042
- 35K. Subramaniam, K. Y. Wong, K. H. Wong, C. T. Chong, J.-H. Ng, Energies (Basel) 2024, 17 (7), 1652. DOI: https://doi.org/10.3390/en17071652
- 36A. L. Machsun, M. Gozan, M. Nasikin, S. Setyahadi, Y. J. Yoo, Biotechnol. Bioprocess Eng. 2010, 15 (6), 911–916. DOI: https://doi.org/10.1007/s12257-010-0151-7
- 37Y. Natarajan, A. Nabera, S. Salike, V. Dhanalakshmi Tamilkkuricil, S. Pandian, M. Karuppan, A. Appusamy, Chem. Eng. Process.–Process Intensif. 2019, 136, 163–176. DOI: https://doi.org/10.1016/j.cep.2018.12.008
- 38S. Kim, D. H. Kim, W. Kim, Y. T. Cho, N. X. Fang, Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8 (1), 303–326. DOI: https://doi.org/10.1007/s40684-020-00277-5
- 39H. S. Santana, J. L. Silva, O. P. Taranto, J. Ind. Eng. Chem. 2019, 69, 1–12. DOI: https://doi.org/10.1016/j.jiec.2018.09.021
- 40T. Xie, L. Zhang, N. Xu, Green Process. Synth. 2012, 1 (1), 61–70. DOI: https://doi.org/10.1515/greenps-2011-0004
- 41A. Tiwari, V. M. Rajesh, S. Yadav, Energy Sustain. Dev. 2018, 43, 143–161. DOI: https://doi.org/10.1016/j.esd.2018.01.002
- 42A. Tiwari, V. M. Rajesh, S. Yadav, Energy Sustain. Dev. 2018, 43, 143–161.
- 43H. Abdulla Yusuf, S. M. Z. Hossain, S. Aloraibi, N. J. Alzaabi, M. A. Alfayhani, H. J. Almedfaie, Chem. Eng. Process.–Process Intensif. 2022, 172, 108792. DOI: https://doi.org/10.1016/j.cep.2022.108792
- 44S. Veluturla, S. A. Rambhia, S. Pranavi, Biofuels 2023, 14 (4), 387–392. DOI: https://doi.org/10.1080/17597269.2022.2145754
- 45R. G., D. Muniyappan, A. Ramanathan, Chem. Eng. Process.–Process Intensif. 2024, 195, 109646. DOI: https://doi.org/10.1016/j.cep.2023.109646
- 46G. Black, D. Shropshire, K. Araújo, A. van Heek, Nucl. Technol. 2023, 209 (1), S1–S20. DOI: https://doi.org/10.1080/00295450.2022.2118626
10.1080/00295450.2022.2118626 Google Scholar
- 47S. Nomanbhay, M. Ong, Bioengineering 2017, 4 (2), 57. DOI: https://doi.org/10.3390/bioengineering4020057
- 48D. Breitwieser, M. M. Moghaddam, S. Spirk, M. Baghbanzadeh, T. Pivec, H. Fasl, V. Ribitsch, C. O. Kappe, Carbohydr. Polym. 2013, 94 (1), 677–686. DOI: https://doi.org/10.1016/j.carbpol.2013.01.077
- 49C. Leonelli, P. Veronesi, Biofuels and Biorefineries, Springer, 2015, 3, 17–40. DOI: https://doi.org/10.1007/978-94-017-9612-5_2
10.1007/978-94-017-9612-5_2 Google Scholar
- 50F. Motasemi, F. N. Ani, Renew. Sustainable Energy Rev. 2012, 16 (7), 4719–4733. DOI: https://doi.org/10.1016/j.rser.2012.03.069
- 51H. C. Nguyen, F.-M. Wang, K. K. Dinh, T. T. Pham, H.-Y. Juan, N. P. Nguyen, H. C. Ong, C. H. Su, Energies (Basel) 2020, 13 (9), 2167. DOI: https://doi.org/10.3390/en13092167
- 52M.-C. Hsiao, P.-H. Liao, N. V. Lan, S.-S. Hou, Energies (Basel) 2021, 14 (2), 437. DOI: https://doi.org/10.3390/en14020437
- 53A. Buasri, P. Sirikoom, S. Pattane, O. Buachum, V. Loryuenyong, ChemEngineering 2023, 7 (4), 65. DOI: https://doi.org/10.3390/chemengineering7040065
- 54N. A. Mohamad Aziz, R. Yunus, D. Kania, H. Abd Hamid, Molecules 2021, 26 (4), 788. DOI: https://doi.org/10.3390/molecules26040788
- 55B. He, J. H. Van Gerpen, Biofuels 2012, 3 (4), 479–488. DOI: https://doi.org/10.4155/bfs.12.35
- 56L. B. Soon, A. Z. M. Rus, S. Hasan, A. D. Daim, Appl. Mech. Mater. 2013, 315, 691–694. DOI: https://doi.org/10.4028/www.scientific.net/AMM.315.691
10.4028/www.scientific.net/AMM.315.691 Google Scholar
- 57S. Asgharzadehahmadi, A. A. Abdul Raman, R. Parthasarathy, B. Sajjadi, Renew. Sustainable Energy Rev. 2016, 63, 302–314. DOI: https://doi.org/10.1016/j.rser.2016.05.030
- 58P. R. Gogate, Chem. Eng. Process. 2008, 47 (4), 515–527. DOI: https://doi.org/10.1016/j.cep.2007.09.014
- 59J. Luo, Z. Fang, R. L. Smith, Prog. Energy Combust. Sci. 2014, 41, 56–93. DOI: https://doi.org/10.1016/j.pecs.2013.11.001
- 60D. B. Meza-Ramírez, C. Hernández-Benítez, A. Contreras-Arias, L. A. Godínez, F. J. Rodríguez-Valadez, Fuel 2021, 288, 119645. DOI: https://doi.org/10.1016/j.fuel.2020.119645
- 61M. A. G. Nasim, O. Khan, M. Parvez, B. K. Bhatt, Green Technol. Sustainability 2023, 1 (3), 100033. DOI: https://doi.org/10.1016/j.grets.2023.100033
10.1016/j.grets.2023.100033 Google Scholar
- 62W. Widayat, T. Darmawan, R. A. Rosyid, H. Hadiyanto, J. Phys. Conf. Ser. 2017, 877, 012037. DOI: https://doi.org/10.1088/1742-6596/877/1/012037
10.1088/1742-6596/877/1/012037 Google Scholar
- 63A. S. Peshkovsky, in Ultrasound: Advances for Food Processing and Preservation, Elsevier 2017, 409–423. DOI: https://doi.org/10.1016/B978-0-12-804581-7.00017-8
10.1016/B978-0-12-804581-7.00017-8 Google Scholar
- 64G. Machado, M. Castier, M. dos Santos, F. Nishiyama, D. Aranda, L. Cardozo-Filho, V. Cabral, V. Steffen, in Distillation Processes–From Solar and Membrane Distillation to Reactive Distillation Modelling, Simulation and Optimization, IntechOpen 2022. DOI: https://doi.org/10.5772/intechopen.102667
- 65K. Sundmacher, A. Kienle, In Reactive Distillation: Status and Future Directions, Eds.; Wiley-VCH: Weinheim, Germany 2006.
- 66A. A. Kiss, M. Jobson, X. Gao, Ind. Eng. Chem. Res. 2019, 58 (15), 5909–5918. DOI: https://doi.org/10.1021/acs.iecr.8b05450
- 67X. Gao, R. Zhao, H. Cong, J. Na, Y. Shi, H. Li, X. Li, Ind. Eng. Chem. Res. 2020, 59 (33), 14935–14946. DOI: https://doi.org/10.1021/acs.iecr.0c02343
- 68S. Karacan, M. T. Cagatay, Int. J. Energy App. Technol. 2018, 5 (4), 153–160. DOI: https://doi.org/10.31593/ijeat.438001
10.31593/ijeat.438001 Google Scholar
- 69S. S. Ali, A. Arsad, S. S. Hossain, A. Basu, M. Asif, Processes 2021, 9 (8), 1340. DOI: https://doi.org/10.3390/pr9081340
- 70F. Mohammadi, M. Rahimi, A. Parvareh, M. Feyzi, Iran. J. Chem. Eng. (IJChE) 2018, 15 (1), 102–114.
- 71M. Mohadesi, A. Gouran, A. Dehghan Dehnavi, Energy 2021, 219, 119671. DOI: https://doi.org/10.1016/j.energy.2020.119671
- 72Y. Tanawannapong, A. Kaewchada, A. Jaree, J. Ind. Eng. Chem. 2013, 19 (1), 37–41. DOI: https://doi.org/10.1016/j.jiec.2012.07.007
- 73H. S. Santana, D. S. Tortola, É. M. Reis, J. L. Silva, O. P. Taranto, Chem. Eng. J. 2016, 302, 752–762. DOI: https://doi.org/10.1016/j.cej.2016.05.122
- 74M. Gojun, A. Ljubić, M. Bačić, A. Jurinjak Tušek, A. Šalić, B. Zelić, Comput. Chem. Eng. 2021, 145, 107200. DOI: https://doi.org/10.1016/j.compchemeng.2020.107200
- 75M. Rahimi, B. Aghel, M. Alitabar, A. Sepahvand, H. R. Ghasempour, Energy Convers. Manage. 2014, 79, 599–605. DOI: https://doi.org/10.1016/j.enconman.2013.12.065
- 76B. Aghel, M. Rahimi, A. Sepahvand, M. Alitabar, H. R. Ghasempour, Energy Convers. Manage. 2014, 84, 541–549. DOI: https://doi.org/10.1016/j.enconman.2014.05.009
- 77E. L. Martínez Arias, P. Fazzio Martins, A. L. Jardini Munhoz, L. Gutierrez-Rivera, R. Maciel Filho, Ind. Eng. Chem. Res. 2012, 51 (33), 10755–10767. DOI: https://doi.org/10.1021/ie300486v
- 78V. Thangarasu, R. Siddharth, A. Ramanathan, Ultrason. Sonochem. 2020, 60, 104764. DOI: https://doi.org/10.1016/j.ultsonch.2019.104764
- 79J. M. Costa, P. C. Pontes, C. P. Naveira-Cotta, M. K. Tiwari, S. Balabani, R. M. Cotta, In Innovations in Sustainable Energy and Cleaner Environment; Eds.; Green Energy and Technology; Springer, 2019, 457–486. DOI: https://doi.org/10.1007/978-981-13-9012-8_20
- 80J.-Y. Dai, D.-Y. Li, Y.-C. Zhao, Z.-L. Xiu, Ind. Eng. Chem. Res. 2014, 53 (22), 9325–9330. DOI: https://doi.org/10.1021/ie4037005
- 81M. Mohadesi, B. Aghel, M. Maleki, A. Ansari, Fuel 2020, 263, 116659. DOI: https://doi.org/10.1016/j.fuel.2019.116659
- 82C. P. Naveira-Cotta, C. P. Tostado, J. M. Costa, J. S. Nunes, Heat Pipe Sci. Technol., Int. J. 2015, 6 (3–4), 135–153. DOI: https://doi.org/10.1615/HeatPipeScieTech.v6.i3-4.30
10.1615/HeatPipeScieTech.v6.i3-4.30 Google Scholar
- 83W. He, Z. Fang, K. Guo, App. Mech. Mater. 2013, 361–363, 343–346. DOI: https://doi.org/10.4028/www.scientific.net/AMM.361-363.343
10.4028/www.scientific.net/AMM.361-363.343 Google Scholar
- 84P. Shrimal, H. Sanklecha, P. Patil, A. Mujumdar, J. Naik, Arabian J. Sci. Eng. 2018, 43 (11), 6133–6141. DOI: https://doi.org/10.1007/s13369-018-3245-8
- 85I. Choedkiatsakul, K. Ngaosuwan, S. Assabumrungrat, S. Mantegna, G. Cravotto, Renew. Energy 2015, 83, 25–29. DOI: https://doi.org/10.1016/j.renene.2015.04.012
- 86M. A. Mohd Ali, J. Gimbun, K. L. Lau, C. K. Cheng, D.-V. N. Vo, S. S. Lam, R. M. Yunus, Environ. Res. 2020, 185, 109452. DOI: https://doi.org/10.1016/j.envres.2020.109452
- 87P. Kodgire, A. Sharma, S. S. Kachhwaha, Fuel Process. Technol. 2022, 230, 107206. DOI: https://doi.org/10.1016/j.fuproc.2022.107206
- 88J.J. Lin, Y.-W. Chen, J. Taiwan Inst. Chem. Eng. 2017, 75, 43–50. DOI: https://doi.org/10.1016/j.jtice.2017.03.034
- 89I. Lawan, Z. N. Garba, W. Zhou, M. Zhang, Z. Yuan, Renew. Energy 2020, 145, 2550–2560. DOI: https://doi.org/10.1016/j.renene.2019.08.008
- 90A. Tangy, I. N. Pulidindi, N. Perkas, A. Gedanken, Bioresour. Technol. 2017, 224, 333–341. DOI: https://doi.org/10.1016/j.biortech.2016.10.068
- 91I. Choedkiatsakul, K. Ngaosuwan, S. Assabumrungrat, S. Tabasso, G. Cravotto, Biomass Bioenergy 2015, 77, 186–191. DOI: https://doi.org/10.1016/j.biombioe.2015.03.013
- 92I. M. Lokman, U. Rashid, Z. Zainal, R. Yunus, Y. H. Taufiq-Yap, J. Oleo Sci. 2014, 63 (9), 849–855. DOI: https://doi.org/10.5650/jos.ess14068
- 93P. Binnal, P. Nirguna Babu, Biofuels 2019, 10 (4), 439–452. DOI: https://doi.org/10.1080/17597269.2017.1316141
- 94M. A. Mohd Ali, R. M. Yunus, C. K. Cheng, J. Gimbun, RSC Adv. 2015, 5 (94), 76743–76751. DOI: https://doi.org/10.1039/C5RA15834F
10.1039/C5RA15834F Google Scholar
- 95H. Ding, W. Ye, Y. Wang, X. Wang, L. Li, D. Liu, J. Gui, C. Song, N. Ji, Energy 2018, 144, 957–967. DOI: https://doi.org/10.1016/j.energy.2017.12.072
- 96R. Priambodo, T.-C. Chen, M.-C. Lu, A. Gedanken, J.-D. Liao, Y.-H. Huang, Energy Procedia 2015, 75, 84–91. DOI: https://doi.org/10.1016/j.egypro.2015.07.143
- 97S. A. El Sherbiny, A. A. Refaat, S. T. El Sheltawy, J. Adv. Res. 2010, 1 (4), 309–314. DOI: https://doi.org/10.1016/j.jare.2010.07.003
10.1016/j.jare.2010.07.003 Google Scholar
- 98H. Yuan, B. Yang, H. Zhang, X. Zhou, Int. J. Chem. Reactor Eng. 2011, 9 (1), 1–11. DOI: https://doi.org/10.1515/1542-6580.2562
- 99S. Bargole, J. Carpenter, S. George, V. K. Saharan, Chem. Eng. Process. 2017, 122, 21–30. DOI: https://doi.org/10.1016/j.cep.2017.09.010
- 100M. Aghbashlo, M. Tabatabaei, S. Hosseinpour, Energy Convers. Manage. 2018, 164, 385–398. DOI: https://doi.org/10.1016/j.enconman.2018.02.086
- 101I. Worapun, K. Pianthong, P. Thaiyasuit, Eng. Appl. Sci. Res. 2010, 37 (3), 169–179.
- 102J. Sáez-Bastante, S. Pinzi, F. Priego-Capote, M. P. Dorado, Johns. Matthey Technol. Rev. 2024, 68 (3), 427–438. DOI: https://doi.org/10.1595/205651324X17004922618615
- 103A. Ahmad, A. K. Yadav, A. Singh, D. K. Singh, Ü. Ağbulut, Energy 2024, 288, 129077. DOI: https://doi.org/10.1016/j.energy.2023.129077
- 104B. Mostafaei, B. Ghobadian, M. Barzegar, A. Banakar, J. Agric. Sci. Technol. 2013, 15 (4), 697–708.
- 105S. Larpkiattaworn, C. Jeerapan, R. Tongpan, S. Tongon, in 7th Biomass Asia Workshop, Jakarta 2010.
- 106T. Laosuttiwong, K. Ngaosuwan, W. Kiatkittipong, D. Wongsawaeng, P. Kim-Lohsoontorn, S. Assabumrungrat, J. Clean Prod. 2018, 205, 1094–1101. DOI: https://doi.org/10.1016/j.jclepro.2018.09.159
- 107E. Fayyazi, B. Ghobadian, G. Najafi, B. Hosseinzadeh, Chem. Prod. Process Model. 2014, 9 (1), 59–70. DOI: https://doi.org/10.1515/cppm-2013-0043
- 108V. G. Gude, G. E. Grant, Appl. Energy 2013, 109, 135–144. DOI: https://doi.org/10.1016/j.apenergy.2013.04.002
- 109I. Korkut, M. Bayramoglu, Fuel 2016, 180, 624–629. DOI: https://doi.org/10.1016/j.fuel.2016.04.101
- 110N. S. Topare, K. D. Patil, S. V. Khedkar, Mater. Today Proc. 2021, 46, 10638–10641. DOI: https://doi.org/10.1016/j.matpr.2021.01.379
- 111B. Salamatinia, H. Mootabadi, S. Bhatia, A. Z. Abdullah, Fuel Process. Technol. 2010, 91 (5), 441–448. DOI: https://doi.org/10.1016/j.fuproc.2009.12.002
- 112D. Kumar, G. Kumar, Poonam, C. P. Singh, Ultrason. Sonochem. 2010, 17 (5), 839–844. DOI: https://doi.org/10.1016/j.ultsonch.2010.03.001
- 113X. Deng, Z. Fang, Y. Liu, C.-L. Yu, Energy 2011, 36 (2), 777–784. DOI: https://doi.org/10.1016/j.energy.2010.12.043
- 114A. Budiman, A. Lelyana, D. Rianawati, S. Sutijan, Jurnal Teknik Kimia Indonesia 2018, 11 (2), 108.
10.5614/jtki.2012.11.2.7 Google Scholar
- 115S. S. Ali, M. Asif, A. Basu, Pol. J. Chem. Technol. 2019, 21 (3), 1–7. DOI: https://doi.org/10.2478/pjct-2019-0022
- 116T. Poddar, A. Jagannath, A. Almansoori, Appl. Energy 2017, 185, 985–997. DOI: https://doi.org/10.1016/j.apenergy.2015.12.054
- 117G. D. Machado, F. L. P. Pessoa, M. Castier, D. A. G. Aranda, V. F. Cabral, L. Cardozo-Filho, Ind. Eng. Chem. Res. 2013, 52 (27), 9461–9469. DOI: https://doi.org/10.1021/ie400806q
- 118Y. S. Pradana, A. Hidayat, A. Prasetya, A. Budiman, Energy Procedia 2017, 143, 742–747. DOI: https://doi.org/10.1016/j.egypro.2017.12.756
- 119R. J. M. C. L. Silva, I. C. P. Tschoeke, J. C. Melo, J. P. Silva, J. G. A. Pacheco, J. M. F. Silva, T. P. C. Souza, Braz. J. Chem. Eng. 2019, 36 (1), 351–359. DOI: https://doi.org/10.1590/0104-6632.20190361s20170266
- 120C. Mueanmas, K. Prasertsit, C. Tongurai, Int. J. Chem. Eng. Appl. 2010, 77–83. DOI: https://doi.org/10.7763/IJCEA.2010.V1.13
10.7763/IJCEA.2010.V1.13 Google Scholar
- 121N. Petchsoongsakul, K. Ngaosuwan, W. Kiatkittipong, F. Aiouache, S. Assabumrungrat, Energy Convers. Manage. 2017, 153, 493–503. DOI: https://doi.org/10.1016/j.enconman.2017.10.013
- 122W. B. Zimmerman, R. Kokoo, Appl. Energy 2018, 221, 28–40. DOI: https://doi.org/10.1016/j.apenergy.2018.03.147
- 123B. B. He, A. P. Singh, J. C. Thompson, Trans. ASAE 2005, 48 (6), 2237–2243. DOI: https://doi.org/10.13031/2013.20071
- 124R. D. Kusumaningtyas, I. N. Aji, H. Hadiyanto, A. Budiman, Bull. Chem. React. Eng. Catal. 2016, 11 (1), 66–74. DOI: https://doi.org/10.9767/bcrec.11.1.417.66-74
- 125R. J. M. C. L. Silva, T. P. C. Souza, D. R. M. Elihimas, J. P. Silva, A. A. Albuquerque, J. G. A. Pacheco, J. M. F. Silva, Biomass Bioenergy 2021, 154, 106263. DOI: https://doi.org/10.1016/j.biombioe.2021.106263
- 126I. Noshadi, N. A. S. Amin, R. S. Parnas, Fuel 2012, 94, 156–164. DOI: https://doi.org/10.1016/j.fuel.2011.10.018
- 127S. Niju, K. M. M. S. Begum, N. Anantharaman, RSC Adv. 2014, 4 (96), 54109–54114. DOI: https://doi.org/10.1039/C4RA05848H
- 128K. Prasertsit, C. Mueanmas, C. Tongurai, Chem. Eng. Process. 2013, 70, 21–26. DOI: https://doi.org/10.1016/j.cep.2013.05.011
- 129G. N. Kraai, B. Schuur, F. van Zwol, H. H. van de Bovenkamp, H. J. Heeres, Chem. Eng. J. 2009, 154 (1–3), 384–389. DOI: https://doi.org/10.1016/j.cej.2009.04.047
- 130A. Seidel-Morgenstern, in Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield, 2010, DOI: https://doi.org/10.1002/9783527629725
10.1002/9783527629725 Google Scholar
- 131M. A. Dubé, A. Y. Tremblay, J. Liu, Bioresour. Technol. 2007, 98 (3), 639–647. DOI: https://doi.org/10.1016/j.biortech.2006.02.019
- 132P. Cao, M. A. Dubé, A. Y. Tremblay, Biomass Bioenergy 2008, 32 (11), 1028–1036. DOI: https://doi.org/10.1016/j.biombioe.2008.01.020
- 133Alok Kumar Singh, Sandun D. Fernando, in 2006 Portland, Oregon, July 9–12, 2006, American Society Of Agricultural And Biological Engineers, St. Joseph, MI 2006.