Modular Equipment for Chemical Process Development and Small-Scale Production in Multipurpose Plants†
Norbert Kockmann
TU Dortmund, BCI, Equipment Design, Emil-Figge-Straße 68, 44227 Dortmund, Germany.
Search for more papers by this authorNorbert Kockmann
TU Dortmund, BCI, Equipment Design, Emil-Figge-Straße 68, 44227 Dortmund, Germany.
Search for more papers by this authorUpdated English version of DOI: 10.1002/cite.201500028
Abstract
Small-scale, continuous-flow processes are currently discussed in the chemical industry for rapid process development and manufacturing of small product amounts. This contribution describes an equipment toolbox system for continuously operated chemical reactors consisting of microfluidic chip or plate reactors for rapid mixing, capillary or coil tube reactors for defined mixing and residence time, as well as continuously stirred tank reactors. The involved phases of the physico-chemical system determine the successfully deployed elements or modules and therefore enable the setup of a flexible multipurpose plant. The platform strategy with modules of similar flow throughput as well as temperature or pressure range allow for consistent scale-up. Several examples show the current development level, while first experiences from plant engineering indicate the implementation status and open issues.
References
- 1
K. Ehrlenspiel, A. Kiewert, U. Lindemann, M. Mörtl, Kostengünstig Entwickeln und Konstruieren – Kostenmanagement bei der integrierten Produktentwicklung, 7th Ed., Springer, Heidelberg 2014.
10.1007/978-3-642-41959-1 Google Scholar
- 2
C. J. Heckmann, Chem. Ing. Tech. 1951, 23 (5), 107–111.
10.1002/cite.330230504 Google Scholar
- 3
J. Graßmuck, K.-W. Houben, R. M. Zollinger, DIN-Normen in der Verfahrenstechnik, 2nd Ed., Beuth, Berlin 1994.
10.1007/978-3-322-90352-5 Google Scholar
- 4 Micro Process Engineering (Eds: V. Hessel), Wiley-VCH, Weinheim 2009.
- 5 F. Darvas, G. Dormán, V. Hessel, Flow Chemistry, Vol. 1 & 2, de Gruyter, Berlin 2014.
- 6 Microreactors in Organic Synthesis (Ed: T. Wirth), 2nd Ed., Wiley-VCH, Weinheim 2013.
- 7
M. N. Kashid, A. Renken, L. Kiwi-Minsker, Microstructured Devices for Chemical Processing, Wiley-VCH, Weinheim 2014.
10.1002/9783527685226 Google Scholar
- 8 V. Hessel, D. Kralisch, N. Kockmann, Novel Process Windows, Wiley-VCH, Weinheim 2014.
- 9 S. J. Haswell, P. Watts, Green Chem. 2003, 5, 240–249.
- 10 R. C. Wootton, A. J. DeMello, Nature 2010, 464, 839–840.
- 11 F. E. Valera, M. Quaranta, A. Moran, J. Blacker, A. Armstrong, J. T. Cabral, D. G. Blackmond, Angew. Chem., Int. Ed. 2010, 49, 2478–2485.
- 12 D. M. Roberge, L. Ducry, N. Bieler, P. Cretton, B. Zimmermann, Chem. Eng. Technol. 2005, 28, 318–323.
- 13 D. M. Roberge, B. Zimmermann, F. Rainone, M. Gottsponer, M. Eyholzer, N. Kockmann, Org. Process Res. Dev. 2008, 12 (5), 905–910.
- 14 D. M. Roberge, M. Gottsponer, M. Eyholzer, N. Kockmann, Chem. Today 2009, 27 (4), 8–11.
- 15 N. Kockmann, M. Gottsponer, B. Zimmermann, D. M. Roberge, Chem. Eur. J. 2008, 14, 7470–7477.
- 16 P. Poechlauer, M. Vorbach, M. Kotthaus, S. Braune, R. Reintjens, F. Mascarello, G. Kwant, in Micro Process Engineering (Eds: V. Hessel), Vol. 3, Wiley-VCH, Weinheim 2009, 249–254.
- 17 K. Wang, Y. C. Lu, Y. Xia, H. W. Shao, G. Luo, Chem. Eng. J. 2011, 169 (1), 290–298.
- 18 N. Kockmann, D. M. Roberge, Chem. Eng. Process. 2011, 50 (10), 1017–1026.
- 19 D. Schmalz, M. Häberl, N. Oldenburg, M. Grund, H. Muntermann, U. Kunz, Chem. Ing. Tech. 2005, 77 (7), 859–866.
- 20 V. Hessel, I. V. Gürsel, Q. Wang, T. Noël, J. Lang, Chem. Ing. Tech. 2012, 84 (5), 660–684.
- 21 P. Plouffe, A. Macchi, D. M. Roberge, Org. Process Res. Des. 2014, 18 (11), 1286–1294.
- 22 A. Brodhagen, M. Grünewald, M. Kleiner, S. Lier, Chem. Ing. Tech. 2012, 84 (5), 624–632.
- 23 T. Bieringer, S. Buchholz, N. Kockmann, Chem. Eng. Technol. 2013, 36, 900–910.
- 24 C. Bramsiepe, N. Krasberg, C. Fleischer, L. Hohmann, N. Kockmann, G. Schembecker, Chem. Ing. Tech. 2014, 86, 966–981. DOI: 10.1002/cite.201400029
- 25 N. Krasberg, L. Hohmann, T. Bieringer, C. Bramsiepe, N. Kockmann, MPDI Processes 2014, 2 (1), 265–292. DOI: 10.3390/pr2010265
- 26 hnp Modulare Baureihe für Mikrozahnringpumpen, www.hnp-mikrosysteme.de/produkte/mikrozahnringpumpen/modulare-baureihe.html (Accessed on November 15, 2015)
- 27 D. Jaritsch, A. Holbach, N. Kockmann, J. Fluids Eng. 2014, 136 (9), 091211. DOI: 10.1115/1.4026608
- 28
H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem. 2007, 119 (30), 5806–5810.
10.1002/ange.200701434 Google Scholar
- 29 www.vapourtec.co.uk (Accessed on November 15, 2015)
- 30 www.uniqsis.com (Accessed on November 15, 2015)
- 31 http://syrris.com (Accessed on November 15, 2015)
- 32 http://thalesnano.com (Accessed on November 15, 2015)
- 33 A. Tollkötter, J. Sackmann, T. Baldhoff, W. K. Schomburg, N. Kockmann, Chem. Ing. Tech. 2015, 87 (6), 823–829. DOI: 10.1002/cite.201400146
- 34 A. Tollkötter, J. Sackmann, T. Baldhoff, W. K. Schomburg, N. Kockmann, Chem. Eng. Technol. 2015, 38 (7), 1113–1121. DOI: 10.1002/ceat.201400522
- 35 www.micronit.com (Accessed on November 15, 2015)
- 36 www.ltf-gmbh.com/produkte/microreactors.html (Accessed on November 15, 2015)
- 37 www.ix-factory.de/applications-en/microreactors-en.html (Accessed on November 15, 2015)
- 38 www.chemtrix.com/products (Accessed on November 15, 2015)
- 39 www.corning.com/discovery_center/emerging_technologies/micro_reactor_technology/index.aspx (Accessed on November 15, 2015)
- 40 www.imm.fraunhofer.de/de/produktbereiche/m4chemistry.html (Accessed on November 15, 2015)
- 41 www.imm.fraunhofer.de/content/dam/imm/de/documents/pdfs/ICT-IMM_PD_Copiride_Reaktoren.pdf (Accessed on November 15, 2015)
- 42 www.ehrfeld.com/fileadmin/user_upload/PDFs/2012/Downloads/Product_Catalogue_2201-06-04.pdf (Accessed on November 15, 2015)
- 43 P. Biessey, M. Grünewald, Chem. Eng. Technol. 2015, 38 (4), 602–608. DOI: 10.1002/ceat.201400645
- 44 D. M. Roberge, N. Bieler, B. Zimmermann, R. Forbertv, (Lonza AG), WO2007112945, 2007.
- 45 A. Tollkötter, J. Wesholowski, F. Schirmbeck, N. Kockmann, 13th Int. Conf. on Nanochannels, Microchannels and Minichannels, San Francisco, July 2015.
- 46 A. K. Saxena, K. D. P. Nigam, AIChE J. 1984, 30 (3), 363–368.
- 47 C. Herrmann, W. Hübinger, J. Kremeskötter, R. Minges, J. Schmidt-Thümmes, H.-U. Moritz, W. Schmidt, M. Ridder, BASF AG, DE Patent DE19634450, 1996.
- 48 K. D. P. Nigam, US Patent US 72006/0162912, 2006.
- 49 K. D. P. Nigam, US Patent US7337835, 2008.
- 50 S. K. Kurt, M. G. Gelhausen, N. Kockmann, Chem. Eng. Technol. 2015, 38 (7), 1122–1130. DOI: 10.1002/ceat.201400515
- 51 V. Gnielinski, in VDI-Wärmeatlas, 11th Ed., Springer, Berlin 2013, Ch. L1, 1.4.
- 52 S. Klutz, S. K. Kurt, M. Lobedann, N. Kockmann, Chem. Eng. Res. Dev. 2015, 95, 22–33.
- 53 www.glaskeller.ch/Kataloge/tabid/1037/language/de-CH/Default.aspx (Accessed on November 15, 2015)
- 54 www.parrinst.com/de/files/downloads/2013/08/4500MB-v12.0_Ch2_Parr_Stirred-Reactors-Literature.pdf (Accessed on November 15, 2015)
- 55 A. Holbach, E. Caliskan, H. S. Lee, N. Kockmann, Chem. Eng. Process. 2014, 80, 21–28. DOI: 10.1016/j.cep.2014.03.013
- 56
S. Falß, S.-A. Hakim, R. Leopold, T. Bieringer, N. Kockmann, Chem. Ing. Tech. 2014, 86, 1371–1372.
10.1002/cite.201450113 Google Scholar
- 57
B. K. Vankayala, P. Löb, V. Hessel, G. Menges, C. Hofmann, D. Metzke, U. Krtschil, H.-J. Kost, Int. J. Chem. React. Eng. 2007, 5 (1), 1542–6580. DOI: 10.2202/1542-6580.1463
10.2202/1542‐6580.1463 Google Scholar
- 58 J. Rauch, Mehrproduktanlagen, Wiley-VCH, Weinheim 1998.
- 59 I. Dittmar, P. Ehrhard, Chem. Ing. Tech. 2013, 85 (10), 1612–1618.
- 60 F. Scheiff, F. Neemann, S. J. Tomasiak, D. W. Agar, Chem. Ing. Tech. 2014, 86 (4), 504–518.
- 61 M. D. Johnson, S. A. May, J. R. Calvin, J. Remacle, J. R. Stout, W. D. Diseroad, N. Zaborenko, B. D. Haeberle, W.-M. Sun, M. T. Miller, J. Brennan, Org. Proc. Res. Dev. 2012, 16 (5), 1017–1038.
- 62 C. Holvey, A. Macchi, N. Kockmann, D. M. Roberge, Chem. Eng. Process. 2011, 50, 1069–1075.
- 63 N. Kockmann, Chem. Ing. Tech. 2012, 84, 646–659.
- 64 N. Kockmann, S. Karlen, C. Girard, D. M. Roberge, Heat Transfer Eng. 2013, 34, 2–3, 169–177.
- 65 A. Tollkoetter, N. Kockmann, 12th Int. Conf. on Nanochannels, Microchannels and Minichannels, Chicago, August 2014.
- 66 A. Woitalka, S. Kuhn, K. F. Jensen, Chem. Eng. Sci. 2014, 116, 1–8.
- 67 L. Falk, J. M. Commenge, Chem. Eng. Sci. 2010, 65 (1), 405–411.
- 68 N. Kockmann, Chem. Ing. Tech. 2012, 84, 715–726.
- 69 B. Holm, DIN. Zum Norm-Geschehen – Zum Zeit-Geschehen. 50 Jahre Deutscher Normen-Ausschuss, DIN, Berlin 1967.
- 70 www.pharmadule.com/concept-services/modular-facilities.aspx (Accessed on November 15, 2015)
- 71 F. E. Jernigan, BIG Bim – little bim, 4site press, Salisbury, MD 2008; German translation: V. Krieger, GROSSES BIM – kleines bim, TMM Group, 2013.
- 72 www.vdi.de/technik/fachthemen/bauen-und-gebaeudetechnik/fachbereiche/bautechnik/artikel/vdi-agenda-building-information-modeling (Accessed on November 15, 2015)
- 73 http://en.suurmond.com/overview/suurdos.aspx (Accessed on November 15, 2015)
- 74 www.chemtrix.com/img/downloads/CHE_brochure-kiloflow_tot.pdf (Accessed on November 15, 2015)
- 75 N. Kockmann, Procedia Eng. 2012, 42, 1214–1218.
- 76 www.f3factory.com (Accessed on November 15, 2015)
- 77 V. Hessel, D. Kralisch, N. Kockmann, T. Noël, Q. Wang, ChemSusChem 2013, 6 (5), 746–789.
- 78 www.pharmtech.com/node/244554?pageID=1 (Accessed on November 15, 2015)
- 79 www.process.vogel.de/anlagenbau_engineering/articles/449254/ (Accessed on November 15, 2015)
- 80 http://agab.vdma.org/article/-/articleview/4520776 (Accessed on November 15, 2015)