Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning
Stephen Gang Wu
Department of Energy, Environmental and Chemical Engineering (EECE), Washington University in St. Louis, One Brookings, 63130 St. Louis, MO, U.S.
Search for more papers by this authorKazuyuki Shimizu
Institute of Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka City 997-0052, Yamagata, Japan.
Search for more papers by this authorJoseph Kuo-Hsiang Tang
The Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, U.S.
Search for more papers by this authorCorresponding Author
Yinjie J. Tang
Department of Energy, Environmental and Chemical Engineering (EECE), Washington University in St. Louis, One Brookings, 63130 St. Louis, MO, U.S.
Department of Energy, Environmental and Chemical Engineering (EECE), Washington University in St. Louis, One Brookings, 63130 St. Louis, MO, U.S.Search for more papers by this authorStephen Gang Wu
Department of Energy, Environmental and Chemical Engineering (EECE), Washington University in St. Louis, One Brookings, 63130 St. Louis, MO, U.S.
Search for more papers by this authorKazuyuki Shimizu
Institute of Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka City 997-0052, Yamagata, Japan.
Search for more papers by this authorJoseph Kuo-Hsiang Tang
The Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, U.S.
Search for more papers by this authorCorresponding Author
Yinjie J. Tang
Department of Energy, Environmental and Chemical Engineering (EECE), Washington University in St. Louis, One Brookings, 63130 St. Louis, MO, U.S.
Department of Energy, Environmental and Chemical Engineering (EECE), Washington University in St. Louis, One Brookings, 63130 St. Louis, MO, U.S.Search for more papers by this authorAbstract
Metabolic engineering (ME) and synthetic biology (SynBio) are two intersecting fields with different focal points. While SynBio focuses more on genomic aspects to build novel cell devices, ME emphasizes the phenotypic outputs (e.g., production). SynBio has the potential to revolutionize the bio-productions; however, the introduction of synthetic devices/pathways often consumes significant cellular resources and incurs fitness costs. Currently, SynBio applications still lack guidelines in re-allocating cellular carbon and energy fluxes. To resolve this, ME principles may help the SynBio community. First, 13C MFA (metabolic flux analysis) can characterize the burdens of genetic infrastructures and reveal optimal strategies for distributing cellular resources. Second, novel microbial chassis should be explored to employ their unique metabolic features for product synthesis. Third, standardization and classification of bio-production papers will not only improve the communication between ME and SynBio, but also facilitate text mining and machine learning to harness information for rational strain design. Ultimately, the data-driven modeling and 13C MFA will be integral components of the SynBio design-build-test-learn cycle for generating novel microbial cell factories.
References
- 1 M. L. Shuler, F. Kargi, Bioprocess Engineering, Prentice Hall, Upper Saddle River 2002.
- 2 S. N. Cohen, A. C. Y. Chang, H. W. Boyer, R. B. Helling, Proc. Natl. Acad. Sci. 1973, 70 (11), 3240–3244.
- 3 B. M. Woolston, S. Edgar, G. Stephanopoulos, Annu. Rev. Chem. Biomol. Eng. 2013, 4 (1), 259–288.
- 4 S. Y. Lee, H. U. Kim, Nat. Biotech. 2015, 33 (10), 1061–1072.
- 5 S. Van Dien, Curr. Opin. Biotech. 2013, 24 (6), 1061–1068.
- 6 Wikipedia, https://en.wikipedia.org/wiki/History_of_biotechnology (Accessed on November 01, 2015)
- 7 F. Zhang, J. M. Carothers, J. D. Keasling, Nat. Biotech. 2012, 30 (4), 354–359.
- 8 I. W. Bogorad, T.-S. Lin, J. C. Liao, Nature 2013, 502, 693–697.
- 9 J. L. Foo, H. M. Jensen, R. H. Dahl, K. George, J. D. Keasling, T. S. Lee, S. Leong, A. Mukhopadhyay, mBio 2014, 5 (6), e01932.
- 10 J. Nielsen, J. D. Keasling, Nat. Biotech. 2011, 29 (8), 693–695.
- 11 J. M. Carothers, J. A. Goler, J. D. Keasling, Curr. Opin. Biotech. 2009, 20 (4), 498–503.
- 12 S. K. Lee, H. Chou, T. S. Ham, T. S. Lee, J. D. Keasling, Curr. Opin. Biotech. 2008, 19 (6), 556–563.
- 13 G. M. Church, M. B. Elowitz, C. D. Smolke, C. A. Voigt, R. Weiss, Nat. Rev. Mol. Cell. Bio. 2014, 15 (4), 289–294.
- 14 www.ncbi.nlm.nih.gov/pmc/tools/ftp (Accessed on September 10, 2015)
- 15 J. Tigani, S. Naidu, Google BigQuery Analytics, Wiley, Hoboken 2014.
- 16 G. Stephanopoulos, Metabol. Eng. 1999, 1 (1), 1–11.
- 17 G. Stephanopoulos, ACS Synth. Biol. 2012, 1 (11), 514–525.
- 18 T. S. Gardner, C. R. Cantor, J. J. Collins, Nature 2000, 403 (6767), 339–342.
- 19 M. B. Elowitz, S. Leibler, Nature 2000, 403 (6767), 335–338.
- 20 A. R. Mushegian, E. V. Koonin, Proc. Natl. Acad. Sci. 1996, 93 (19), 10268–10273.
- 21 C. A. Hutchison, S. N. Peterson, S. R. Gill, R. T. Cline, O. White, C. M. Fraser, H. O. Smith, J. C. Venter, Science 1999, 286 (5447), 2165–2169.
- 22 K. Kobayashi, S. D. Ehrlich, A. Albertini, G. Amati, K. K. Andersen, M. Arnaud, K. Asai, S. Ashikaga, S. Aymerich, P. Bessieres, F. Boland, S. C. Brignell, S. Bron, K. Bunai, J. Chapuis, L. C. Christiansen, A. Danchin, M. Débarbouillé, E. Dervyn, E. Deuerling, K. Devine, S. K. Devine, O. Dreesen, J. Errington, S. Fillinger, S. J. Foster, Y. Fujita, A. Galizzi, R. Gardan, C. Eschevins, T. Fukushima, K. Haga, C. R. Harwood, M. Hecker, D. Hosoya, M. F. Hullo, H. Kakeshita, D. Karamata, Y. Kasahara, F. Kawamura, K. Koga, P. Koski, R. Kuwana, D. Imamura, M. Ishimaru, S. Ishikawa, I. Ishio, D. Le Coq, A. Masson, C. Mauël, R. Meima, R. P. Mellado, A. Moir, S. Moriya, E. Nagakawa, H. Nanamiya, S. Nakai, P. Nygaard, M. Ogura, T. Ohanan, M. O'Reilly, M. O'Rourke, Z. Pragai, H. M. Pooley, G. Rapoport, J. P. Rawlins, L. A. Rivas, C. Rivolta, A. Sadaie, Y. Sadaie, M. Sarvas, T. Sato, H. H. Saxild, E. Scanlan, W. Schumann, J. F. M. L. Seegers, J. Sekiguchi, A. Sekowska, S. J. Séror, M. Simon, P. Stragier, R. Studer, H. Takamatsu, T. Tanaka, M. Takeuchi, H. B. Thomaides, V. Vagner, J. M. van Dijl, K. Watabe, A. Wipat, H. Yamamoto, M. Yamamoto, Y. Yamamoto, K. Yamane, K. Yata, K. Yoshida, H. Yoshikawa, U. Zuber, N. Ogasawara, Proc. Natl. Acad. Sci. 2003, 100 (8), 4678–4683.
- 23 D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R.-Y. Chuang, M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z.-Q. Qi, T. H. Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutchison, H. O. Smith, J. C. Venter, Science 2010, 329 (5987), 52–56.
- 24 C. D. Smolke, Nat. Biotech. 2009, 27 (12), 1099–1102.
- 25
J. Brown, IET Synth. Biol. 2007, 1, 3–6.
10.1049/iet-stb:20079020 Google Scholar
- 26 E. C. Hayden, Nature 2015, 520, 141–142.
- 27 C.-X. Zu, H. Li, Energy Environ. Sci. 2011, 4 (8), 2614–2624.
- 28 K. Zhuang, G. N. Vemuri, R. Mahadevan, Mol. Syst. Biol. 2011, 7 (500), 1–9.
- 29 S. G. Wu, L. He, Q. Wang, Y. J. Tang, Microb. Cell. Fact. 2015, 14 (39), 1–9.
- 30
U. Sauer, J. E. Bailey, Biotechnol. Bioeng. 1999, 64 (6), 750–754.
10.1002/(SICI)1097-0290(19990920)64:6<750::AID-BIT15>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 31 S. Birnbaum, J. E. Bailey, Biotechnol. Bioeng. 1991, 37, 736–745.
- 32 A. Varma, B. O. Palsson, Appl. Environ. Microbiol. 1994, 60 (10), 3724–3731.
- 33 M. Eames, T. Kortemme, Science 2012, 336 (6083), 911–915.
- 34 C. J. Petzold, L. J. G. Chan, M. Nhan, P. D. Adams, Front Bioeng. Biotechnol. 2015, 3, 135.
- 35 T. M. Hoehler, B. B. Jorgensen, Nat. Rev. Micro. 2013, 11 (2), 83–94.
- 36 S. Poust, A. Hagen, L. Katz, J. D. Keasling, Curr. Opin. Biotech. 2014, 30, 32–39.
- 37 P. F. Colletti, Y. Goyal, A. M. Varman, X. Feng, B. Wu, Y. J. Tang, Biotechnol. Bioeng. 2011, 108 (4), 893–901.
- 38 B. R. Glick, Biotechnol. Adv. 1995, 13 (2), 247–261.
- 39 M. J. Smanski, S. Bhatia, D. Zhao, Y. Park, L. B. A. Woodruff, G. Giannoukos, D. Ciulla, M. Busby, J. Calderon, R. Nicol, D. B. Gordon, D. Densmore, C. A. Voigt, Nat. Biotech. 2014, 32 (12), 1241–1249.
- 40 J. M. Walter, D. Greenfield, C. Bustamante, J. Liphardt, Proc. Natl. Acad. Sci. 2007, 104 (7), 2408–2412.
- 41 P. Xu, L. Li, F. Zhang, G. Stephanopoulos, M. Koffas, Proc. Natl. Acad. Sci. 2014, 111 (31), 11299–11304.
- 42 T. D. H. Bugg, M. Ahmad, E. M. Hardiman, R. Singh, Curr. Opin. Biotech. 2011, 22 (3), 394–400.
- 43 M. E. Brown, M. C. Y. Chang, Curr. Opin. Chem. Biol. 2014, 19, 1–7.
- 44 C. J. Joshua, R. Dahl, P. I. Benke, J. D. Keasling, J. Bacteriol. 2011, 193 (6), 1293–1301.
- 45 Z. Ruan, W. Hollinshead, C. Isaguirre, Y. J. Tang, W. Liao, Y. Liu, Bioresour. Technol. 2015, 183, 18–24.
- 46 P. Adler, L. J. Frey, A. Berger, C. J. Bolten, C. E. Hansen, C. Wittmann, Appl. Environ. Microbiol. 2014, 80 (15), 4702–4716.
- 47 L. You, B. Berla, L. He, H. B. Pakrasi, Y. J. Tang, Biotechnol. J. 2014, 9 (5), 684–692.
- 48 J. B. McKinlay, C. S. Harwood, Proc. Natl. Acad. Sci. 2010, 107 (26), 11669–11675.
- 49 J. Zarzycki, V. Brecht, M. Müller, G. Fuchs, Proc. Natl. Acad. Sci. 2009, 106 (50), 21317–21322.
- 50 K. H. Tang, K. Barry, O. Chertkov, E. Dalin, C. S. Han, L. J. Hauser, B. M. Honchak, L. E. Karbach, M. L. Land, A. Lapidus, F. W. Larimer, N. Mikhailova, S. Pitluck, B. K. Pierson, R. E. Blankenship, BMC Genom. 2011, 12, 334.
- 51 W. Xiong, T.-C. Lee, S. Rommelfanger, E. Gjersing, M. Cano, P.-C. Maness, M. Ghirardi, J. Yu, Nat. Plants 2015, 2, 15187.
- 52 J. Lian, M. Garcia-Perez, R. Coates, H. Wu, S. Chen, Bioresourc. Technol. 2012, 118, 177–186.
- 53 B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol. 2006, 40 (17), 5181–5192.
- 54 A. C. Forster, G. M. Church, Mol. Syst. Biol. 2006, 2 (1), 45.
- 55 M. C. Jewett, A. C. Forster, Curr. Opin. Biotech. 2010, 21 (5), 697–703.
- 56 K. Zhou, K. Qiao, S. Edgar, G. Stephanopoulos, Nat. Biotech. 2015, 33 (4), 377–383.
- 57 S. Ranganathan, P. F. Suthers, C. D. Maranas, PLoS Comput. Biol. 2010, 6 (4), e1000744.
- 58 A. P. Burgard, P. Pharkya, C. D. Maranas, Biotechnol. Bioeng. 2003, 84 (6), 647–657.
- 59 Y. W. Choon, M. S. Mohamad, S. Deris, R. M. Illias, C. K. Chong, L. E. Chai, S. Omatu, J. M. Corchado, PLoS ONE 2014, 9 (7), e102744.
- 60 P. Pharkya, A. P. Burgard, C. D. Maranas, Genome Res. 2004, 14 (11), 2367–2376.
- 61 I. Rocha, P. Maia, P. Evangelista, P. Vilaca, S. Soares, J. Pinto, J. Nielsen, K. Patil, E. Ferreira, M. Rocha, BMC Syst. Biol. 2010, 4 (1), 45.
- 62 Y. J. Tang, H. G. Martin, S. Myers, S. Rodriguez, E. E. K. Baidoo, J. D. Keasling, Mass Spectrom. Rev. 2009, 28 (2), 362–375.
- 63 M. Antoniewicz, J. Ind. Microbiol. Biot. 2015, 42 (3), 317–325.
- 64 J. D. Young, A. A. Shastri, G. Stephanopoulos, J. A. Morgan, Metabol. Eng. 2011, 13 (6), 656–665.
- 65 M. Hörl, J. Schnidder, U. Sauer, N. Zamboni, Biotechnol. Bioeng. 2013, 110 (12), 3164–3176.
- 66 F. Ma, L. J. Jazmin, J. D. Young, D. K. Allen, Proc. Natl. Acad. Sci. 2014, 111 (47), 16967–16972.
- 67 K. Nöh, W. Wiechert, Appl. Microbiol. Biot. 2011, 91 (5), 1247–1265.
- 68 A. Nicolae, J. Wahrheit, J. Bahnemann, A.-P. Zeng, E. Heinzle, BMC Syst. Biol. 2014, 8 (1), 50.
- 69 J. M. Buescher, M. R. Antoniewicz, L. G. Boros, S. C. Burgess, H. Brunengraber, C. B. Clish, R. J. DeBerardinis, O. Feron, C. Frezza, B. Ghesquiere, E. Gottlieb, K. Hiller, R. G. Jones, J. J. Kamphorst, R. G. Kibbey, A. C. Kimmelman, J. W. Locasale, S. Y. Lunt, O. D. K. Maddocks, C. Malloy, C. M. Metallo, E. J. Meuillet, J. Munger, K. Nöh, J. D. Rabinowitz, M. Ralser, U. Sauer, G. Stephanopoulos, J. St-Pierre, D. A. Tennant, C. Wittmann, M. G. Vander Heiden, A. Vazquez, K. Vousden, J. D. Young, N. Zamboni, S.-M. Fendt, Curr. Opin. Biotech. 2015, 34, 189–201.
- 70 H. García Martín, V. S. Kumar, D. Weaver, A. Ghosh, V. Chubukov, A. Mukhopadhyay, A. Arkin, J. D. Keasling, PLoS Comput. Biol. 2015, 11 (9), e1004363.
- 71 S. Gopalakrishnan, C. D. Maranas, Metab. Eng. 2015, 32, 12–22.
- 72
J. D. Winkler, A. L. Halweg-Edwards, R. T. Gill, Metab. Eng. Commun. 2015, 2, 30–38.
10.1016/j.meteno.2015.06.003 Google Scholar
- 73 R. Kohavi, F. Provost, Mach. Learn. 1998, 30 (2–3), 271–274.
- 74 A. L. Tarca, V. J. Carey, X.-W. Chen, R. Romero, S. Drăghici, PLoS Comput. Biol. 2007, 3 (6), e116.
- 75 D. B. Kell, FEBS J. 2006, 273 (5), 873–894.
- 76 J. Dale, L. Popescu, P. Karp, BMC Bioinform. 2010, 11 (1), 15.
- 77 A. M. Varman, Y. Xiao, E. Leonard, Y. J. Tang, Microb. Cell. Fact. 2011, 10 (1), 45.
- 78 Q. Zhang, Y.-G. Cao and H. Yu, Comput. Biol. Med. 2011, 41, 190–194.
- 79 Y. Xiao, Z. Ruan, Z. Liu, S. G. Wu, A. M. Varman, Y. Liu, Y. J. Tang, Biochem. Eng. J. 2013, 76, 60–69.
- 80 B. Alberts, M. W. Kirschner, S. Tilghman, H. Varmus, Proc. Natl. Acad. Sci. 2014, 111 (16), 5773–5777.
- 81 www.scj.go.jp/ja/info/kohyo/division-15.html (Accessed on November 05, 2015)