Chemical Composition of Artemisia Scoparia and Their Bioactivities
PhD student Guziliayi Kuerban
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
University of Chinese Academy of Sciences, Beijing, 100049 PR China
Contribution: Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAssoc. Prof. Ablajan Turak
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAssoc. Prof. Nurmirza Boymirzayevich Begmatov
S.Yu.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
Contribution: Resources (lead), Writing - review & editing (supporting)
Search for more papers by this authorProf. Jiangyu Zhao
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
University of Chinese Academy of Sciences, Beijing, 100049 PR China
Contribution: Project administration (equal), Resources (equal), Supervision (equal)
Search for more papers by this authorCorresponding Author
Prof. Haji Akber Aisa
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
University of Chinese Academy of Sciences, Beijing, 100049 PR China
Search for more papers by this authorPhD student Guziliayi Kuerban
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
University of Chinese Academy of Sciences, Beijing, 100049 PR China
Contribution: Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAssoc. Prof. Ablajan Turak
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAssoc. Prof. Nurmirza Boymirzayevich Begmatov
S.Yu.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
Contribution: Resources (lead), Writing - review & editing (supporting)
Search for more papers by this authorProf. Jiangyu Zhao
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
University of Chinese Academy of Sciences, Beijing, 100049 PR China
Contribution: Project administration (equal), Resources (equal), Supervision (equal)
Search for more papers by this authorCorresponding Author
Prof. Haji Akber Aisa
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 PR China
University of Chinese Academy of Sciences, Beijing, 100049 PR China
Search for more papers by this authorAbstract
Three undescribed sesquiterpenes (1–3), two enantiomeric pairs of monoterpenes (4a/4b–5a/5b), one alkyne (6), two known alkynes (7–8) and eight known coumarins (9–16) were isolated from the aerial parts extracts of Artemisia scoparia. The structures of these compounds were fully elucidated by their 1D and 2D NMR, HRESIMS spectral data analyses, and comparison with literature. The absolute configurations of compounds were determined by single-crystal X-ray crystallography (1), a comparison of experimental and calculated electronic circular dichroism (ECD) data (2–6). 15 showed moderate inhibitory activity with the NO release in LPS-induced RAW264.7 cells. 9–16 showed varying degrees of promoting melanogenesis and tyrosinase activity in B16 cells.
Graphical Abstract
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cbdv202400414-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Ribnicky, B. K. Seon, A. Poulev, Y. Wang, A. Boudreau, I. Raskin, J. Bisson, G. J. Ray, S.-N. Chen, A. Richard, J. M. Stephens, G. F. Pauli, J. Nat. Prod. 2021, 84, 1078–1086.
- 2H. Singh, S. Mittal, S. Kaur, D. Batish, R. Kohli, Food Chem. 2009, 114, 642–645.
- 3K. Promyo, J.-Y. Cho, K.-H. Park, L. Jaiswal, S.-Y. Park, K.-S. Ham, Food Sci. Biotechnol. 2017, 26, 775–782.
- 4J. Y. Cho, K. H. Park, D. Y. Hwang, S. Chanmuang, L. Jaiswal, Y. K. Park, S. Y. Park, S. Y. Kim, H. R. Kim, J. H. Moon, K. S. Ham, Molecules 2015, 20, 19789–19804.
- 5J. Y. Cho, K. H. Park, D. Y. Hwang, S. Y. Lee, J. H. Moon, Y. J. Lee, K. D. Park, K. S. Ham, J. Asian Nat. Prod. Res. 2020, 22, 795–802.
- 6Y. Hu, G. Y. Sun, W. Y. Zhang, Nat. Prod. Res. 2021, 33, 1616–1625.
- 7G. S. Stojanović, J. D. Ickovski, A. S. Đorđević, G. M. Petrović, K. D. Stepić, I. R. Palić, J. G. Stamenković, Nat. Prod. Commun. 2020, 15, 1–7.
- 8J. Ding, L. Wang, C. He, J. Zhao, L. Si, H. Huang, J. Ethnopharmacol. 2021, 273, 113960.
- 9C. A. Geng, X. Y. Huang, X. L. Chen, Y. B. Ma, G. Q. Rong, Y. Zhao, X. M. Zhang, J. J. Chen, J. Ethnopharmacol. 2015, 176, 109–117.
- 10A. Boudreau, S. J. Burke, J. J. Collier, A. J. Richard, D. M. Ribnicky, J. M. Stephens, Obesity 2020, 28, 1726–1735.
- 11E. Choi, H. Park, J. Lee, G. Kim, J. Tradit. Chin. Med. 2013, 33, 92–97.
- 12H. P. Singh, S. Kaur, S. Mittal, D. R. Batish, R. K. Kohli, Food Chem. Toxicol. 2010, 48, 1040–1044.
- 13M. A. H. M. Bilgin, B. D. Obay, S. O. Zekinci, E. Tas-demir, A. Ketani, Exp. Toxicol. Pathol. 2011, 63, 325–330.
- 14H. M. Bilgin, M. Atmaca, B. D. Obay, S. Ozekinci, E. Tasdemir, A. Ketani, Exp. Toxicol. Pathol. 2011, 63, 325–330.
- 15J. D. Cha, M. R. Jeong, S. I. Jeong, S. E. Moon, J. Y. Kim, B. S. Kil, Y. H. Song, Planta Med. 2005, 71, 186–190.
- 16J. Y. Cho, S. J. Jeong, H. L. Lee, K. H. Park, D. Y. Hwang, S. Y. Park, Y. G. Lee, J. H. Moon, K. S. Ham, Food Sci. Biotechnol. 2016, 25, 1701–1708.
- 17S. K. Sharma, M. Ali, J. Nat. Prod. 1996, 59, 181–184.
- 18C. M. Wu, W. Chu, Y. L. Chen, D. E. Liang, F. J. Qiu, Z. J. Zhan, L. F. Ma, Fitoterapia 2022, 158.
- 19B. Bläs, J. Zapp, H. Becker, Phytochemistry 2004, 65, 127–137.
- 20H. Wang, W.-H. Dong, W.-J. Zuo, S. Liu, H.-M. Zhong, W.-L. Mei, H.-F. Dai, Fitoterapia 2014, 95, 16–21.
- 21C. Osorioa, C. Duque, Y. Fujimotob, Phytochemistry 2000, 53, 97–101.
- 22H. J. Domínguez, D. Cabrera-García, C. Cuadrado, A. Novelli, M. T. Fernández-Sánchez, J. J. Fernández, A. H. Daranas, Org. Lett. 2020, 23, 13–18.
- 23H. J. Jung, B. S. Min, J. Y. Park, Y. H. Kim, H. K. Lee, K. H. Bae, J. Nat. Prod. 2002, 65, 897–901.
- 24W. H. Chen, X. M. Ma, Q. X. Wu, Y. P. Shi, Can. J. Chem. 2008, 86, 892–898.
- 25B.-K. K. S. Lee, S. H. Cho, K. H. Shin, Arch. Pharmacal Res. 2002, 22, 280–284.
10.1007/BF02976626 Google Scholar
- 26X. Q. Z. J. Ying, H. W. Li, Z. Y. Tian, Y. W. Cai, Nat. Prod. Res. 2010, 22, 181–184.
- 27S. A. L. Bayoumi, M. G. Rowan, J. R. Beeching, I. S. Blagbrough, Phytochemistry 2010, 71, 598–604.
- 28B. I. Fozdar, S. A. Khan, T. Shamsuddin, K. M. Shamsuddin, J. Kintzinger, Phytochemistry 1989, 28, 2459–2461.
- 29X. Tao, L. J. Yu, L. Jing, W. Min, W. X. Li, Y. C. Hua, J. China Pharm. Uni. 2004, 35, 401–403.
- 30D. Engelmeier, F. Hadacek, O. Hofer, G. Lutz-Kutschera, M. Nagl, G. Wurz, H. Greger, J. Nat. Prod. 2004, 67, 19–25.
- 31J. Rivera-Chávez, M. Figueroa, M. d. C. González, A. E. Glenn, R. Mata, J. Nat. Prod. 2015, 78, 730–735.
- 32J. H. Ruan, J. Li, G. Adili, G. Y. Sun, M. Abuduaini, R. Abdulla, M. Maiwulanjiang, H. A. Aisa, J. Agric. Food Chem. 2022, 70, 3678–3686.
- 33X. M. Duan, J. Li, J. Cui, Y. Dong, X. Xin, H. A. Aisa, J. Ethnopharmacol. 2022, 286, 114899.
- 34P. Ainiwaer, M. Nueraihemaiti, Z. Li, D. Zang, L. Jiang, Y. Li, H. A. Aisa, Fitoterapia 2022, 156.