Volume 19, Issue 11 e202200474
Research Article

Abrusamide H Impairs the Secretion of the Cytokines in RAW264.7 Cells and the Inflammatory Infiltration in Tail Transection-Induced Zebrafish

Roujia Liu

Roujia Liu

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China

Search for more papers by this author
Feirong Zhou

Feirong Zhou

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China

Search for more papers by this author
Jiaxian Yu

Jiaxian Yu

Jinan University, Guangzhou, P. R. China

Search for more papers by this author
Xinru Wei

Xinru Wei

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China

Search for more papers by this author
Xiangying Liu

Xiangying Liu

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China

Search for more papers by this author
Xujiang Yuan

Corresponding Author

Xujiang Yuan

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China

Search for more papers by this author
Chuqin Yu

Corresponding Author

Chuqin Yu

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China

Search for more papers by this author
First published: 03 October 2022
Citations: 3

Abstract

Abrus mollis Hance (Leguminosae) has a variety of biological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, and antitumor activities. However, the specific substances responsible for the anti-inflammatory effects are unknown. Abrusamide H (BJBS) is a truxillic acid derivative obtained from the leaves of Abrus mollis Hance and has potential anti-inflammatory effects. In this study, we aimed to estimate the potential effect and mechanism of BJBS in inflammation by establishing lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and an injured zebrafish tail fin in vivo. The RAW264.7 cells were treated with different concentrations of BJBS after LPS stimulation. The production of nitric oxide (NO) was detected by Griess reaction, and reactive oxygen species (ROS) were detected by an ROS assay kit. The levels of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 18 (IL-18) were measured by ELISA. Results showed that BJBS at all concentrations inhibited the proliferation of RAW264.7 macrophages after LPS stimulation by cell counting kit-8 and the production of NO and ROS. In the BJBS treatment group, the levels of IL-6, TNF-α, IL-1β, and IL-18 decreased in a concentration-dependent manner. The results in vivo showed that no significant difference in the survival of zebrafish between the BJBS and blank groups and BJBS inhibited the migration and aggregation of zebrafish neutrophils in a dose-dependent manner in inflammation induced by tail transection-induced inflammation. In conclusion, BJBS inhibited the production of NO and ROS, decreased the levels of secreted IL-6, TNF-α, IL-1β, and IL-18, and reduced the migration and aggregation of zebrafish neutrophils.

Graphical Abstract

Conflict of interest

The authors declare no conflict of interest.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.