Analysis of Chemical Composition and Assessment of Antioxidant, Cytotoxic and Synergistic Antibacterial Activities of Essential Oils from Different Plant Parts of Piper boehmeriifolium
Ruo-Lan Wang
Marine College, Shandong University, Weihai, 264209 P. R. China
Search for more papers by this authorYang Gao
Marine College, Shandong University, Weihai, 264209 P. R. China
Search for more papers by this authorCorresponding Author
Xiang Xing
Marine College, Shandong University, Weihai, 264209 P. R. China
Search for more papers by this authorRuo-Lan Wang
Marine College, Shandong University, Weihai, 264209 P. R. China
Search for more papers by this authorYang Gao
Marine College, Shandong University, Weihai, 264209 P. R. China
Search for more papers by this authorCorresponding Author
Xiang Xing
Marine College, Shandong University, Weihai, 264209 P. R. China
Search for more papers by this authorAbstract
The essential oils (EOs) from leaves, stems, and whole plant of Piper boehmeriifolium were analyzed using GC/FID and GC/MS. The main constituents of P. boehmeriifolium EOs were β-caryophyllene, caryophyllene oxide, β-elemene, spathulenol, germacrene D, β-selinene, and neointermedeol. The antioxidant potential of the EOs were determined using DPPH•, ABTS•+ and FRAP assays. In ABTS•+ assay, the leaf oil exhibited a remarkable activity with an IC50 value of 7.36 μg/mL almost similar to BHT (4.06 μg/mL). Furthermore, the antibacterial activity of the oils as well as their synergistic potential with conventional antibiotics were evaluated using microdilution and Checkerboard assays. The results revealed that the oils from different parts of P. boehmeriifolium inhibited the growth of all tested bacteria and the minimum inhibitory concentrations were determined to be 0.078 – 1.250 mg/mL. In combination with chloramphenicol or streptomycin, the oils showed significant synergistic antibacterial effects in most cases. Besides, the results of MTT assay indicated that the oil of the whole plant exhibited significant cytotoxic activities on human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF-7). In summary, the P. boehmeriifolium oils could be regarded as a prospective source for pharmacologically active compounds.
Graphical Abstract
References
- 1W. Peschel, F. Sánchez-Rabaneda, W. Diekmann, A. Plescher, I. Gartzía, D. Jiménez, R. Lamuela-Raventos, S. Buxaderas, C. Codina, ‘An industrial approach in the search of natural antioxidants from vegetable and fruit wastes’, Food Chem. 2006, 97, 137–150.
- 2F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, ‘Biological effects of essential oils – a review’, Food Chem. Toxicol. 2008, 46, 446–475.
- 3M. Perricone, E. Arace, M. R. Corbo, M. Sinigaglia, A. Bevilacqua, ‘Bioactivity of essential oils: a review on their interaction with food components’, Front. Microbiol. 2015, 6, 76–83.
- 4K. H. C. Baser, G. Buchbauer, ‘Handbook of essential oils: science, technology, and applications’, CRC Press, 2015.
- 5S. Burt, ‘Essential oils: their antibacterial properties and potential applications in foods – a review’, Int. J. Food Microbiol. 2004, 94, 223–253.
- 6D. Lopes-Lutz, D. S. Alviano, C. S. Alviano, P. P. Kolodziejczyk, ‘Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils’, Phytochemistry 2008, 69, 1732–1738.
- 7J. S. Raut, S. M. Karuppayil, ‘A status review on the medicinal properties of essential oils’, Ind. Crops Prod. 2014, 62, 250–264.
- 8Y. C. Tseng, N. H. Xia, M. G. Gilbert, ‘Flora of China’, Science Press, Beijing, 1999, Vol. 4, p. 110.
- 9Y. H. Wang, S. L. Morris-Natschke, J. Yang, H. M. Niu, C. L. Long, K. H. Lee, ‘Anticancer principles from medicinal Piper (Hú Ji o plants’, J. Tradit. Complement. Med. 2014, 4, 8–16.
- 10E. Mgbeahuruike, T. Yrjönen, H. Vuorela, Y. Holm, ‘Bioactive compounds from medicinal plants: Focus on Piper species’, S. Afr. J. Bot. 2017, 112, 54–69.
- 11Y. Q. Cheng, G. F. Wu, P. S. Chen, ‘Flora of China’, Science Press, Beijing, 1982, Vol. 20, p. 52.
- 12Editorial Board of ‘Zhong Hua Ben Cao’, ‘State administration of traditional Chinese medicine of the People's Republic China’, Shanghai Science and Technology Press, Shanghai, 1985, Vol. 3, p. 427.
- 13L. Jirovetz, G. Buchbauer, M. B. Ngassoum, M. Geissler, ‘Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography-mass spectrometry and olfactometry’, J. Chromatogr. A 2002, 976, 265–275.
- 14H. M. D. Navickiene, A. d. A. Morandim, A. C. Alécio, L. O. Regasini, D. C. B. Bergamo, M. Telascrea, A. J. Cavalheiro, M. N. Lopes, V. d. S. Bolzani, M. Furlan, ‘Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum’, Quim. Nova 2006, 29, 467–470.
- 15J. A. Pino, R. Marbot, A. Bello, A. Urquiola, ‘Essential oils of Piper peltata (L.) Miq. and Piper aduncum L. from Cuba’, J. Essent. Oil Res. 2004, 16, 124–126.
- 16P. R. D. dos Santos, D. de Lima Moreira, E. F. Guimarães, M. A. C. Kaplan, ‘Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest’, Phytochemistry 2001, 58, 547–551.
- 17S. M. de Morais, V. A. Facundo, L. M. Bertini, E. S. B. Cavalcanti, J. F. dos Anjos Júnior, S. A. Ferreira, E. S. de Brito, M. A. de Souza Neto, ‘Chemical composition and larvicidal activity of essential oils from Piper species’, Biochem. Syst. Ecol. 2007, 35, 670–675.
- 18M. Mundina, R. Vila, F. Tomi, M. P. Gupta, T. Adzet, J. Casanova, S. Cañigueral, ‘Leaf essential oils of three Panamanian Piper species’, Phytochemistry 1998, 47, 1277–1282.
- 19S. Dahham, Y. Tabana, M. Iqbal, M. Ahamed, M. Ezzat, A. Majid, A. Majid, ‘The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna’, Molecules 2015, 20, 11808–11829.
- 20Z. J. Dai, W. Tang, W. F. Lu, J. Gao, H. F. Kang, X. B. Ma, W. L. Min, X. J. Wang, W. Y. Wu, ‘Antiproliferative and apoptotic effects of β-elemene on human hepatoma HepG2 cells’, Cancer Cell Int. 2013, 13, 27.
- 21A. L. Matsuo, C. R. Figueiredo, M. H. Chaves, P. Sartorelli, J. H. G. Lago, ‘Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae)’, Nat. Prod. Commun. 2013, 8, 277–279.
- 22L. Su, F. F. Xie, Y. R. Tang, H. Zhu, ‘Analysis on chemical components of Yao medicine Piper boehmeriifolium (Miq.) Wall. ex C. DC. and Piper hancei Maxim. by GC/MS’, China Med. Herald 2014, 36, 83–87 (in Chinese).
- 23R. P. Adams, ‘Identification of essential oil components by gas chromatography/mass spectrometry’, Allured, Carol Stream, USA, 2017.
- 24N. R. Andriamaharavo, ‘Retention Data’, NIST Mass Spectrometry Data Center, 2014.
- 25V. I. Babushok, P. J. Linstrom, I. G. Zenkevich, ‘Retention indices for frequently reported compounds of plant essential oils’, J. Phys. Chem. Ref. Data 2011, 40, 1–47.
- 26M. G. Miguel, ‘Antioxidant activity of medicinal and aromatic plants. A review’, Flavour Frag. J. 2010, 25, 291–312.
- 27I. Wiegand, K. Hilpert, R. E. Hancock, ‘Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances’, Nat. Protoc. 2008, 3, 163–175.
- 28J. R. Calo, P. G. Crandall, C. A. O′Bryan, S. C. Ricke, ‘Essential oils as antimicrobials in food systems – A review’, Food Control 2015, 54, 111–119.
- 29D. Buldain, A. V. Buchamer, M. L. Marchetti, F. Aliverti, A. Bandoni, N. Mestorino, ‘Combination of cloxacillin and essential oil of Melaleuca armillaris as an alternative against Staphylococcus aureus’, Front. Vet. Sci. 2018, 5. 177.
- 30S. Chouhan, K. Sharma, S. Guleria, ‘Antimicrobial activity of some essential oils – present status and future perspectives’, Medicine 2017, 4, 58.
- 31P. Knezevic, V. Aleksic, N. Simin, E. Svircev, A. Petrovic, N. Mimica-Dukic, ‘Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii’, J. Ethnopharmacol. 2016, 178, 125–136.
- 32K. F. do Nascimento, F. M. F. Moreira, J. A. Santos, C. A. L. Kassuya, J. H. R. Croda, C. A. L. Cardoso, M. C. Vieira, A. L. T. G. Ruiz, M. A. Foglio, J. E. Carvalho, ‘Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol’, J. Ethnopharmacol. 2018, 210, 351–358.
- 33X. Q. Yu, W. F. He, D. Q. Liu, M. T. Feng, Y. Fang, B. Wang, L. H. Feng, Y. W. Guo, S. C. Mao, ‘A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada’, Phytochemistry 2014, 103, 162–170.
- 34R. S. Lemes, C. C. Alves, E. B. Estevam, M. B. Santiago, C. H. Martins, T. C. D. Santos, A. E. Crotti, M. L. Miranda, ‘Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria’, An. Acad. Bras. Cienc. 2018, 90, 1285–1292.
- 35F. C. Odds, ‘Synergy, antagonism, and what the chequerboard puts between them’, J. Antimicrob. Chemother. 2003, 52, 1–1.
- 36H. Wagner, G. Ulrich-Merzenich, ‘Synergy research: approaching a new generation of phytopharmaceuticals’, Phytomedicine 2009, 16, 97–110.
- 37A. Rosato, A. Carocci, A. Catalano, M. L. Clodoveo, C. Franchini, F. Corbo, G. G. Carbonara, A. Carrieri, G. Fracchiolla, ‘Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials’, PLoS One 2018, 13, e0200902.
- 38A. Rosato, M. Piarulli, F. Corbo, M. Muraglia, A. Carone, M. Vitali, C. Vitali, ‘In Vitro synergistic action of certain combinations of gentamicin and essential oils’, Curr. Med. Chem. 2010, 17, 3289–3295.
- 39H. Rao, P. Lai, Y. Gao, ‘Chemical composition, antibacterial activity, and synergistic effects with conventional antibiotics and nitric oxide production inhibitory activity of essential oil from Geophila repens (L.) IM Johnst’, Molecules 2017, 22, 1561.
- 40A. Bag, R. R. Chattopadhyay, ‘Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination’, PLoS One 2015, 10, e0131321.
- 41U. Taukoorah, N. Lall, F. Mahomoodally, ‘Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics’, S. Afr. J. Bot. 2016, 105, 133–140.
- 42V. Aleksic, N. Mimica-Dukic, N. Simin, N. S. Nedeljkovic, P. Knezevic, ‘Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates’, Phytomedicine 2014, 21, 1666–1674.
- 43M. Chatterjee, C. Anju, L. Biswas, V. A. Kumar, C. G. Mohan, R. Biswas, ‘Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options’, Int. J. Med. Microbiol. 2016, 306, 48–58.
- 44A. Sharma, V. K. Bajpai, S. Shukla, ‘Sesquiterpenes and cytotoxicity’, in ‘Natural Products’, Eds. K. Ramawat, J. M. Mérillon, Springer, Berlin, Heidelberg, 2013, p. 3515.
- 45M. Tilaoui, H. A. Mouse, A. Jaafari, A. Zyad, ‘Comparative phytochemical analysis of essential oils from different biological parts of Artemisia herba alba and their cytotoxic effect on cancer cells’, PLoS One 2015, 10, e0131799.
- 46I. Lampronti, A. M. Saab, R. Gambari, ‘Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division’, Int. J. Oncol. 2006, 29, 989–995.
- 47K. R. Park, D. Nam, H. M. Yun, S. G. Lee, H. J. Jang, G. Sethi, S. K. Cho, K. S. Ahn, ‘β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3 K/AKT/mTOR/S6 K1 pathways and ROS-mediated MAPKs activation’, Cancer Lett. 2011, 312, 178–188.
- 48L. J. Li, L. F. Zhong, L. P. Jiang, C. Y. Geng, L. J. Zou, ‘β-Elemene radiosensitizes lung cancer A549 cells by enhancing DNA damage and inhibiting DNA repair’, Phytother. Res. 2011, 25, 1095–1097.
- 49K. Fidyt, A. Fiedorowicz, L. Strządała, A. Szumny, ‘β-Caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties’, Cancer Med. 2016, 5, 3007–3017.
- 50C. Y. Duh, S. K. Wang, Y. L. Weng, M. Y. Chiang, C. F. Dai, ‘Cytotoxic terpenoids from the Formosan soft coral Nephthea brassica’, J. Nat. Prod. 1999, 62, 1518–1521.
- 51J. Liu, X. J. Hu, B. Jin, X. J. Qu, K. Z. Hou, Y. P. Liu, ‘β-Elemene induces apoptosis as well as protective autophagy in human non-small-cell lung cancer A549 cells’, J. Pharm. Pharmacol. 2012, 64, 146–153.
- 52X. D. Su, Y. Gao, Y. X. Xiang, P. X. Lai, X. Xing, ‘Chemical composition and biological activities of the essential oil from Aristolochia fordiana Hemsl’, Rec. Nat. Prod. 2019, 13, 346–354.
- 53L. Fukumoto, G. Mazza, ‘Assessing antioxidant and prooxidant activities of phenolic compounds’, J. Agric. Food Chem. 2000, 48, 3597–3604.
- 54M. Olszowy, A. L. Dawidowicz, ‘Essential oils as antioxidants: their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-carotene bleaching methods’, Monatsh. Chem.-Chem. Monthly 2016, 147, 2083–2091.
- 55I. F. Benzie, J. J. Strain, ‘The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay’, Anal. Biochem. 1996, 239, 70–76.
- 56I. F. Benzie, Y. Szeto, ‘Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay’, J. Agric. Food Chem. 1999, 47, 633–636.
- 57J. Eloff, ‘A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria’, Planta Med. 1998, 64, 711–713.
- 58F. R. Cockerill, Clinical, L. S. Institute, ‘Performance standards for antimicrobial disk susceptibility testing: approved standard’, National Committee for Clinical Laboratory Standards, 2012.
- 59J. M. Andrews, ‘Determination of minimum inhibitory concentrations’, J. Antimicrob. Chemother. 2001, 48, 5–16.
- 60R. L. White, D. S. Burgess, M. Manduru, J. A. Bosso, ‘Comparison of three different In Vitro methods of detecting synergy: time-kill, checkerboard, and E test’, Antimicrob. Agents Chemother. 1996, 40, 1914–1918.
- 61A. Kumar, F. Malik, S. Bhushan, V. K. Sethi, A. K. Shahi, J. Kaur, S. C. Taneja, G. N. Qazi, J. Singh, ‘An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells’, Chem.-Biol. Interact. 2008, 171, 332–347.
- 62O. Firuzi, K. Javidnia, M. Gholami, M. Soltani, R. Miri, ‘Antioxidant activity and total phenolic content of 24 Lamiaceae species growing in Iran’, Nat. Prod. Commun. 2010, 5, 261–264.
- 63T. Mosmann, ‘Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays’, J. Immunol. Methods 1983, 65, 55–63.
- 64L. Ghribi, A. Ben Nejma, M. Besbes, F. Harzalla-Skhiri, G. Flamini, H. Ben Jannet, ‘Chemical composition, cytotoxic and antibacterial activities of the essential oil from the Tunisian Ononis angustissima L. (Fabaceae)’, J. Oleo Sci. 2016, 65, 339–345.