Amino Acid Ligand Chirality for Enantioselective Syntheses
Károly Micskei
Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen
Search for more papers by this authorTamás Patonay
Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen
Search for more papers by this authorLuciano Caglioti
Department of Chemistry and Technology of Biologically Active Compounds, University ‘La Sapienza'-Roma, Ple. A. Moro 5, I-00185 Roma
Search for more papers by this authorGyula Pályi
Department of Chemistry. University of Modena and Reggio Emilia, I-41100 Modena
Search for more papers by this authorKároly Micskei
Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen
Search for more papers by this authorTamás Patonay
Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen
Search for more papers by this authorLuciano Caglioti
Department of Chemistry and Technology of Biologically Active Compounds, University ‘La Sapienza'-Roma, Ple. A. Moro 5, I-00185 Roma
Search for more papers by this authorGyula Pályi
Department of Chemistry. University of Modena and Reggio Emilia, I-41100 Modena
Search for more papers by this authorAbstract
Amino acids are attractive sources of chirality in stoichiometric or catalytic transition metal/organic chemistry. In spite of easy availability and other advantages, the application of these ligands is hindered by several problems. Now, at the dawn of emerging d-amino acid biochemistry, efforts in this direction are becoming increasingly important. The results of research on application of amino acid ligands for transition-metal reagents in organic syntheses are reviewed in the present work.
References
- 1 ‘D-Amino Acids: A New Frontier in Amino Acids and Protein Research; Practical Methods and Protocols’, Eds. R. Konno, H. Brückner, A. D'Aniello, G. Fisher, N. Fujii, H. Homma, Nova Science, New York, 2007.
- 2 ‘Encyclopedia of Catalysis’, Ed. I. T. Horváth, Wiley-Interscience, Hoboken, 2003.
- 3 W. S. Knowles, Angew. Chem., Int. Ed. 2002, 41, 1998–2007 (Nobel Lecture).
- 4
‘ Homogeneous Catalysis with Metal Phosphine Complexes’, Ed. L. H. Pignolet, Plenum Press, New York, 1983;
H. Brunner, W. Zettlmeier, ‘ Handbook of Enantioselective Catalysis’, VCH, Weinheim, 1993;
R. Noyori, ‘Asymmetric Catalysis in Organic Synthesis’, John Wiley & Sons, New York, 1994;
‘Comprehensive Asymmetric Catalysis I–III’, Eds. E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Springer, Berlin, 1999;
‘Catalytic Asymmetric Synthesis’, 2nd edn., Ed. I. Ojima, Wiley-VCH, Weinheim, 2000;
‘Applied Homogeneous Catalysis with Organometallic Compounds’, 2nd edn., Eds. B. Cornils, W. A. Herrmann, VCH-Wiley, Weinheim, 2002;
R. Noyori, Angew. Chem., Int. Ed. 2002, 41, 2008–2022 (Nobel Lecture).
10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 5 ‘Chiral Compounds Chemistry’, Fluka, Buchs, 1994; ‘Chiral Non-Racemic Compounds’, Sigma-Aldrich, Milwaukee, 1998.
- 6a K. Bartha, M. Csékei, S. Csihony, H. Mehdi, I. T. Horváth, Z. Pusztai, G. Vlád, Magyar Kém. Lapja 2000, 55, 173–181;
- 6b U. M. Lindstrém, Chem. Rev. 2002, 102, 2751–2772;
- 6c I. T. Horváth, Acc. Chem. Res. 2002, 35, 685.
- 7
K. B. Sharpless, Angew. Chem., Int. Ed. 2002, 41, 2024–2032 (Nobel Lecture).
10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 8 K. Micskei, T. Patonay, G. Pályi, in ‘New Developments in Organometallic Chemistry Research’, Ed. M. A. Cato, Nova Science, Haupauge, 2006, pp. 91–115.
- 9a T. Kiss, in ‘Biocoordination Chemistry’, Ed. K. Burger, Ellis Horwood, New York, 1990, pp. 57–134;
- 9b
K. Severin, R. Bergs, W. Beck, Angew. Chem., Int. Ed. 1998, 37, 1634–1654;
10.1002/(SICI)1521-3773(19980703)37:12<1634::AID-ANIE1634>3.0.CO;2-C PubMed Web of Science® Google Scholar
- 9c P. A. Lay, A. Levina, in ‘Comprehensive Coordination Chemistry – II’, Eds. J. A. McCleverty, T. J. Meyer, Elsevier-Pergamon, Amsterdam, Oxford, 2003, Vol. 4, pp. 313–413.
- 10 Z. Nagy-Magos, P. Kvintovics, L. Markó, Transition Met. Chem. 1980, 5, 186–188.
- 11 M. Enamullah, M. Hasegawa, T. Hoshi, J. Okubo, J. Bangladesh Chem. Soc. 2005, 18, 165–173; M. Enamullah, M. Uddin, W. Linert, J. Coord. Chem. 2007, 60, 2309–2318; C. Janiak, A.-C. Chamayou, A. K. M. Royhan Uddin, M. Uddin, K. S. Hagen, M. Enamullah, Dalton Trans. 2009, 3698–3709.
- 12 M. Enamullah, A. Sharmin, M. Hasegawa, T. Hoshi, A.-C. Chamayou, C. Janiak, Eur. J. Inorg. Chem. 2006, 2146–2154.
- 13 T. Hauck, K. Sünkel, W. Beck, Z. Anorg. Allg. Chem. 2006, 632, 2305–2309.
- 14 S. Otto, G. Boccaletti, J. B. F. N. Engberts, J. Am. Chem. Soc. 1998, 120, 4238–4239; S. W. Otto, J. B. F. N. Engberts, J. Am. Chem. Soc. 1999, 121, 6798–6806; D. B. Grotjahn, C. Joubran, D. Combs, J. Organomet. Chem. 1999, 589, 115–121; Á. Kathó, D. Carmona, F. Viguri, C. D. Remacha, J. Kovács, F. Joó, L. A. Oro, J. Organomet. Chem. 2000, 593/594, 299–306; H. Y. Rhyoo, Y.-A. Yoon, H.-J. Park, Y. K. Chung, Tetrahedron Lett. 2001, 42, 5045–5048; M. Sharma, N. Kumari, P. Das, P. Chutia, D. K. Dutta, J. Mol. Catal., A: Chem. 2002, 188, 25–35; C. J. Tsai, Y. L. Liu, H. C. Tsai, US Pat. Appl. 2003130540-A1-200330710; D. B. Grotjahn, C. Joubran, Inorg. Chim. Acta 2004, 357, 3047–3056; W. J. Shaw, Y. Chen, J. Fulton, J. Linehan, A. Gutowska, T. Bitterwolf, J. Organomet. Chem. 2008, 693, 2111–2118.
- 15 E. Farkas, I. Sóvágó, Amino Acids Pept. Proteins 2002, 33, 295–364; J. Paradowska, M. Stodulski, J. Mlynarski, Angew. Chem., Int. Ed. 2009, 48, 4288–4297.
- 16 ‘Aqueous Organometallic Chemistry and Catalysis’, Eds. I. T. Horváth, F. Joó, Kluwer, Dordrecht, 1995; F. Joó, ‘Aqueous Organometallic Catalysis’, Kluwer, Dordrecht, 2001; ‘ Handbook of Green Chemistry’, Eds. J. Clark, S. Miertus, Brno University of Technology, Brno, 2002; D. Lantos, I. T. Horváth, in ‘Comprehensive Organometallic Chemistry’, Eds. R. H. Crabtree, D. M. P. Mingos, Elsevier, Oxford, UK, 2007, Vol. 1, pp. 823–844.
- 17 K. Micskei, N. Florini, G. F. Arnaud, C. Zucchi, L. Caglioti, G. Pályi, in ‘Organometallic Chirality’, Eds. G. Pályi, C. Zucchi, L. Caglioti, Mucchi Ed. – Accad. Nazl. Sci. Lett. Arti, Modena, 2008, pp. 247–264.
- 18 K. Micskei, F. Debreczeni, I. Nagypál, J. Chem. Soc., Dalton Trans. 1983, 1335–1338; K. Micskei, I. Nagypál, J. Chem. Soc., Dalton Trans. 1986, 2721–2723.
- 19 G. Pályi, K. Micskei, L. Bencze, C. Zucchi, Magyar Kém. Lapja 2003, 58, 218–223.
- 20a ‘D-Amino Acids in Sequences of Secreted Peptides of Multicellular Organisms’, Ed. P. Jollés, Birkhäuser, Basel, 1998;
- 20b Y. Nagata, in ‘Advances in BioChirality’, Eds. G. Pályi, C. Zucchi, L. Caglioti, Elsevier, Amsterdam, 1999, pp. 271–283;
- 20c N. Fujii, Orig. Life Evol. Biosphere 2002, 32, 103–127;
- 20d N. Fujii, T. Saito, Chem. Rec. 2004, 4, 267–278.
- 21 B. Barabás, L. Caglioti, K. Micskei, C. Zucchi, G. Pályi, Orig. Life Evol. Biosphere 2008, 38, 317–327.
- 22 T. Kawasaki, M. Shimizu, D. Nishiyama, M. Ito, H. Ozawa, K. Soai, Chem. Commun. 2009, 4396–4398; T. Kawasaki, Y. Matsumura, T. Tsutsumi, K. Suzuki, M. Ito, K. Soai, Science 2009, 324, 492–495.
- 23 L. Keszthelyi, Q. Rev. Biophys. 1995, 28, 473–507; M. Quack, Angew. Chem., Int. Ed. 2000, 41, 4618–4630; L. Caglioti, O. Holczknecht, N. Fujii, C. Zucchi, G. Pályi, Orig. Life Evol. Biosphere 2006, 36, 459–466.
- 24a K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767–768;
- 24b K. Soai, T. Shibata, I. Sato, Acc. Chem. Res. 2000, 33, 382–390;
- 24c K. Soai, Viva Origino 2002, 30, 186–198;
- 24d K. Soai, T. Shibata, I. Sato, Bull. Chem. Soc. Jpn. 2004, 77, 1063–1073;
- 24e K. Soai, T. Kawasaki, in ‘Organometallic Chirality, Eds. G. Pályi, C. Zucchi, L. Caglioti, Mucchi Ed. – Accad. Nazl. Sci. Lett. Arti, Modena, 2008, pp. 107–125.
- 25 K. Micskei, M. Maioli, C. Zucchi, L. Caglioti, G. Pályi, Tetrahedron: Asymmetry 2006, 17, 2960–2962; L. Caglioti, K. Micskei, G. Pályi, Viva Origino 2007, 35, 82–84.
- 26 R. L. Pecsok, J. J. Lingane, J. Am. Chem. Soc. 1950, 72, 189–193.
- 27 ‘Comprehensive Organic Syntheses’, Eds. B. M. Trost, I. Fleming, Pergamon Press, Oxford, UK, 1991.
- 28 J. Iqbal, B. Bhatia, N. K. Nayyar, Chem. Rev. 1994, 94, 519–564.
- 29 K. Micskei, C. Hajdu, T. Patonay, C. Zucchi, L. Caglioti, G. Pályi, in ‘Progress in Biological Chirality’, Eds. G. Pályi, C. Zucchi, L. Caglioti, Elsevier, Oxford, UK, 2004, pp. 221–235.
- 30 F. A. Cotton, L. M. Daniels, C. A. Murillo, Polyhedron 1992, 11, 2475–2481; P. J. Toscano, P. T. Di Mauro, S. Geremia, L. Randaccio, E. Zangrando, Inorg. Chim. Acta 1994, 217, 195–199; V. C. Gibson, C. Newton, C. Redsaw, G. A. Sloan, A. J. P. White, D. J. Williams, J. Chem. Soc., Dalton Trans. 1999, 827–829.
- 31 G. Pályi, C. Zucchi, L. Bencze, L. Caglioti, in ‘New Avenues in Bioinformatics’, Eds. E. Rubin, J. Seckbach, Springer, Berlin, 2004, pp. 81–98.
- 32a F. A. Cotton, R. A. Walton, ‘Multiple Bonds Between Metal Atoms’, Wiley, New York, 1984;
- 32b F. A. Cotton, E. A. Hillard, C. A. Murillo, H.-C. Zhou, J. Am. Chem. Soc. 2000, 122, 416–417;
- 32c R. Clérac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, C. A. Murillo, I. Pascual, Inorg. Chem. 2000, 39, 748–751.
- 33 N. Florini, Ph.D. Thesis, University of Modena and Reggio Emilia, Modena, 2009.
- 34 J. Gyarmati, C. Hajdu, Z. Dinya, K. Micskei, C. Zucchi, G. Pályi, J. Organomet. Chem. 1999, 586, 106–109.
- 35 T. Patonay, C. Hajdu, J. Jekő, A. Lévai, K. Micskei, C. Zucchi, Tetrahedron Lett. 1999, 40, 1373–1374.
- 36 K. Micskei, C. Hajdu, L. A. Wessjohann, L. Mercs, A. Kiss-Szikszai, T. Patonay, Tetrahedron: Asymmetry 2004, 15, 1735–1744.
- 37 Z. Ratkovic, L. Somsák, K. Micskei, C. Zucchi, G. Pályi, J. Organomet. Chem. 2001, 637–639, 813–819.
- 38a H. S. Schrekker, M. W. G. de Bolster, R. V. A. Orru, L. A. Wessjohann, J. Org. Chem. 2002, 67, 1975–1981;
- 38b K. Alpander, R. Ding, U. M. Lindström, J. Wennerberg, S. Schultz, Angew. Chem., Int. Ed. 2007, 46, 4543–4546;
- 38c M. Stodulski, J. Jaźwiński, J. Mlynarski, Eur. J. Org. Chem. 2008, 5553–5562;
- 38d K. Aplander, R. Ding, M. Krasavin, U. M. Lindström, J. Wennerberg, Eur. J. Org. Chem. 2009, 810–821.
- 39 K. Micskei, O. Holczknecht, V. Marchis, A. Lévai, T. Patonay, C. Zucchi, G. Pályi, Chirality 2005, 17, 511–514.
- 40 K. Micskei, O. Holczknecht, C. Hajdu, T. Patonay, V. Marchis, M. Meo, C. Zucchi, G. Pályi, J. Organomet. Chem. 2003, 682, 143–148.
- 41a J. K. Kochi, D. D. Davis, J. Am Chem. Soc. 1964, 86, 5264–5271;
- 41b A. Bakac, V. Butkovic, J. H. Espenson, R. Marcec, M. Orhanovic, Inorg. Chem. 1986, 25, 2562–2566;
- 41c P. Huston, J. H. Espenson, A. Bakac, Inorg. Chem. 1991, 30, 4826–4830;
- 41d J. H. Espenson, Acc. Chem. Res. 1992, 25, 222–227.
- 42 K. Takai, N. Katsura, Y. Kunisada, Chem. Commun. 2001, 1724–1725.
- 43
G. Kovács, J. Gyarmati, L. Somsák, K. Micskei, Tetrahedron Lett. 1996, 37, 1293–1296;
G. Kovács, K. Micskei, Tetrahedron Lett. 1997, 38, 9055–9056;
K. Micskei, J. Gyarmati, G. Kovács, S. Makleit, C. Simon, Z. Szabó, J. Marton, S. Hosztafi, H. Reinke, H. J. Drexler, Eur. J. Org. Chem. 1999, 149–153.
10.1002/(SICI)1099-0690(199901)1999:1<149::AID-EJOC149>3.0.CO;2-Z CAS Web of Science® Google Scholar
- 44 B. Barabás, L. Caglioti, F. Faglioni, N. Florini, P. Lazzeretti, M. Maioli, K. Micskei, G. Rábai, F. Taddei, C. Zucchi, G. Pályi, Am. Inst. Phys. Conf. Proc. B 2007, 963, 1150–1152; Chem. Today 2008, 26(5), 30–32.
- 45 N. Florini, G. F. Arnaud, B. Kónya, C. Zucchi, G. Pályi, Tetrahedron: Asymmetry 2009, 20, 1036–1039; G. F. Arnaud, N. Florini, L. Caglioti, C. Zucchi, G. Pályi, Tetrahedron: Asymmetry 2009, 20, 1633–1636; N. Florini, F. Faglioni, C. Zucchi, L. Caglioti, G. Pályi, Amino Acids 2010, 38, 1343.
- 46
G. Lente, J. Phys. Chem. A 2005, 109, 11058–11063;
Y. Chu, Z. Shan, D. Liu, N. Sun, J. Org. Chem. 2006, 71, 3998–4001;
J. B. Grimm, K. J. Wilson, D. J. Witter, Tetrahedron Lett. 2007, 48, 4509–4513;
T. Patonay, K. Micskei, É. Juhász-Tóth, S. Fekete, V. C. Pardi-Tóth, ARKIVOC 2009, vi, 270–290.
10.3998/ark.5550190.0010.627 Google Scholar
- 47 P. Cintas, Synthesis 1992, 248–257; D. M. Hodgson, J. Organomet. Chem. 1994, 476, 1–5; L. A. Wessjohann, G. Scheid, Synthesis 1999, 1–36; A. Fürstner, Chem. Rev. 1999, 99, 991–1045; H. B. Kagan, Tetrahedron 2003, 59, 10351–10372.
- 48 J. B. Conant, H. B. Cutter, J. Am. Chem. Soc. 1926, 48, 1016–1030.
- 49 K. Micskei, C. Hajdu, T. Patonay, L. Caglioti, G. Pályi, in print, 2009.
- 50 R. W. Hoffmann, Angew. Chem., Int. Ed. 2003, 42, 1096–1109.
- 51 N. Fujii, K. Satoh, K. Harada, Y. Ishibashi, J. Biochem. 1994, 116, 663–669; N. Fujii, Y. Momose, K. Harada, Int. J. Pept. Protein Res. 1996, 48, 118–122; N. Fujii, K. Harada, Y. Momose, N. Ishii, M. Akaboshi, Biochem. Biophys. Res. Commun. 1999, 263, 322–326.