On a Hypothetical Generational Relationship between HCN and Constituents of the Reductive Citric Acid Cycle†
Albert Eschenmoser
Laboratory of Organic Chemistry, Swiss Federal Institute of Technology, Hönggerberg HCI H309, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich
The Skaggs Institute for Chemical Biology at The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
Search for more papers by this authorAlbert Eschenmoser
Laboratory of Organic Chemistry, Swiss Federal Institute of Technology, Hönggerberg HCI H309, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich
The Skaggs Institute for Chemical Biology at The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
Search for more papers by this authorSee also the preceeding paper [1].
Abstract
Encouraged by observations made on the course of reactions the HCN-tetramer can undergo with acetaldehyde, I delineate a constitutional and potentially generational relationship between HCN and those constituents of the reductive citric acid cycle that are direct precursors of amino acids in contemporary metabolism. In this context, the robustness postulate of classical prebiotic chemistry is questioned, and, by an analysis of the (hypothetical) reaction-tree of a stepwise hydrolysis of the HCN-tetramer, it is shown how such a non-robust chemical reaction platform could harbor the potential for the emergence of autocatalytic cycles. It is concluded that the chemistry of HCN should be revisited by focussing on its non-robust parts in order to demonstrate its full potential as one of the possible roots of prebiotic self-organizing chemical processes.
References
- 1 K. E. Koch, W. B. Schweizer, A. Eschenmoser, Chem. Biodiv. 2007, 4, 541.
- 2 C. A. Rich, in ‘ Horizons in Biochemistry’, Eds. M. Kasha, B. Pullmann, Academic Press, N.Y., 1962, p. 103; C. Woese, Proc. Natl. Acad. Sci. U.S.A. 1968, 59, 110; F. H. C. Crick, J. Mol. Biol. 1968, 38, 367; L. E. Orgel, J. Mol. Biol. 1968, 38, 381; M. Eigen, Naturwissenschaften 1971, 58, 465; H. Kuhn, Angew. Chem., Int. Ed. 1972, 11, 798; S. Lifson, J. Mol. Evol. 1997, 44, 1.
- 3 G. F. Joyce, L. E. Orgel, in ‘The RNA World’, Eds. R. F. Gesteland, J. F. Atkins, Cold Spring Harbor Laboratory Press, 1993, p. 1; G. F. Joyce, L. E. Orgel, in ‘The RNA World’, 2nd edn., Eds. R. F. Gesteland, T. R. Cech, J. F. Atkins, Cold Spring Harbor Laboratory Press, 1999, p. 49; L. E. Orgel, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99.
- 4a M. Ycas, Proc. Natl. Acad. Sci. U.S.A. 1955, 41, 714;
- 4b F. Dyson, J. Mol. Evol. 1982, 18, 344;
- 4c F. Dyson, ‘Origins of Life’, Cambridge University Press, 1985;
- 4d S. A. Kaufmann, J. Theor. Biol. 1986, 119, 1;
- 4e G. Wächtershäuser, Microbiol. Rev. 1988, 52, 452;
- 4f S. A. Kauffmann, ‘The Origins of Order – Self-Organization and Selection in Evolution’, Oxford University Press, 1993;
- 4g D. Segre, D. Ben-Eli, D. Lancet, Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4112;
- 4h E. Szathmary, Philos. Trans. R. Soc. London, Ser. B 2000, 355, 1669.
- 5 L. E. Orgel, Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12503; P. Schuster, Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7678; A. Lazcano, S. L. Miller, J. Mol. Evol. 1999, 49, 424; A. D. Keefe, S. L. Miller, G. McDonald, J. Bada, Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 11904.
- 6 G. Wächtershäuser, Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 200; G. Wächtershäuser, Prog. Biophys. Mol. Biol. 1992, 58, 85.
- 7a H. Morowitz, J. D. Kostelnik, J. Yang, G. D. Cody, Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7704;
- 7b E. Smith, H. J. Morowitz, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13168.
- 8a C. De Duve, ‘Blueprint for a Cell: The Nature and Origin of Life’, Patterson, Burlington, N.C., 1991;
- 8b A. L. Weber, Orig. Life Evol. Biosphere 2001, 31, 71;
- 8c
R. Breslow, Tetrahedron Lett. 1959, 21, 22;
10.1016/S0040-4039(01)99487-0 Google Scholar
- 8d R. Pascal, L. Boiteau, A. Commeyras, Top. Curr. Chem. 2005, 259, 69;
- 8e C. Huber, W. Eisenreich, S. Hecht, G. Wächtershäuser, Science 2003, 301, 938;
- 8f C. Huber, G. Wächtershäuser, Science 2006, 314, 630;
- 8g D. H. Lee, K. Severin, Y. Yokobayash, M. R. Ghadiri, Nature 1997, 390, 591.
- 9a C. Huber, G. Wächterhäuser, Science 1997, 276, 245;
- 9b G. D. Cody, N. Z. Boctor, T. R. Filley, R. M. Hazen, J. H. Scott, A. Sharma, H. S. Yoder Jr., Science 2000, 289, 1337;
- 9c G. D. Cody, N. Z. Boctor, R. M. Hazen, J. A. Brandes, H. J. Morowitz, H. S. Yoder Jr., Geochim. Cosmochim. Acta 2001, 65, 3557;
- 9d X. V. Zhang, S. T. Martin, J. Am. Chem. Soc. 2006, 128, 16032.
- 10a S. L. Miller, L. E. Orgel, ‘The Origins of Life on Earth’, Prentice-Hall, Englewood Cliffs, N.J. 1974;
- 10b J. P. Ferris, W. J. Hagan Jr. Tetrahedron 1984, 40, 1093;
- 10c S. L. Miller, A. Lazcano, in ‘Life's origin: The Beginnings of Biological Evolution’, Ed. W. Schopf, University of California Press, Berkeley, 2002, pp. 78–112.
- 11a S. L. Miller, Science 1953, 117, 528;
- 11b J. Oro, A. P. Kimball, Biochem. Biophys. Res. Commun. 1960, 2, 407.
- 12 R. A. Sanchez, J. P. Ferris, L. E. Orgel, J. Mol. Biol. 1967, 30, 223; J. P. Ferris, P. C. Joshi, E. H. Edelson, J. G. Lawless, J. Mol. Evol. 1978, 11, 293; J. P. Ferris, E. H. Edelson, J. Org. Chem. 1978, 43, 3989; H. Bredereck, G. Schmötzer, E. Öhler, Liebigs Ann. Chem. 1956, 600, 81.
- 13a K.-U. Schoening, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, A. Eschenmoser, Science 2000, 290, 1347;
- 13b A. Eschenmoser, Science 1999, 284, 2118;
- 13c A. Eschenmoser, Proceedings of workshop ‘Basic Questions about the Origin of Life’ (October 2–5, 2006, organized by P. L. Luisi, Erice, Sicily), Orig. Life Evol. Biosphere 2007, in press.
- 14 P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science 1991, 254, 1479.
- 15 D. H. Lee, J. R. Granja, J. Martinez, K. Severin, M. R. Ghadiri, Nature 1996, 382, 525.
- 16 G. von Kiedrowski, Angew. Chem., Int. Ed. 1986, 25, 932; W. S. Zielinski, L. E. Orgel, Nature (London) 1987, 327, 346; L. E. Orgel, Nature 1992, 358, 203.
- 17 E. F. Hartree, J. Am. Chem. Soc. 1953, 75, 6244; M. P. Gupta, N. P. Gupta, Acta Crystallogr., Sect. B 1968, 24, 631.
- 18 R. W. Hay, S. J. Harvie, Aust. J. Chem. 1965, 18, 1197; D. L. Rohlfing, Arch. Biochem. Biophys. 1967, 118, 468; C.-H. Wong, G. M. Whitesides, J. Am. Chem. Soc. 1983, 105, 5012.
- 19 M. Levy, S. L. Miller, J. Oro, J. Mol. Evol. 1999, 49, 165; A. B. Voet, A. W. Schwartz, Orig. Life Evol. Biosphere 1982, 12, 45.
- 20 K. Koerber, P. Risch, R. Brückner, Synlett 2005, 19, 2905.
- 21
A. P. Marchand, G. Madhusudhan Reddy, Synthesis 1991, 3, 198.
10.1055/s-1991-26417 Google Scholar
- 22 D. Seebach, Angew. Chem. 1979, 91, 259.
- 23 W. M. Garrison, D. C. Morrison, H. R. Haymond, J. G. Hamilton, J. Am. Chem. Soc. 1952, 74, 4216; W. M. Garrison, W. Bennett, S. Cole, Radiat. Res. 1958, 9, 647.
- 24 V. M. Doctor, J. Oro, Naturwissenschaften 1967, 54, 443; C. Huber, G. Wächterhäuser, Tetrahedron Lett. 2003, 44, 1695; H. Mix, Hoppe-Seyler's Z. Physiol. Chem. 1961, 323, 173.
- 25a D. E. Metzler, J. B. Longenecker, E. E. Snell, J. Am. Chem. Soc. 1954, 76, 639;
- 25b K. Toth, T. L. Amyes, J. P. Richard, J. P. G. Malthouse, M. E. NíBeilliú, J. Am. Chem. Soc. 2004, 126, 10538;
- 25c R. Breslow, J. Am. Chem. Soc. 1957, 79, 1762;
- 25d P. D. Van Poelje, E. E. Snell, Ann. Rev. Biochem. 1990, 59, 29.
- 26a R. Pascal, J. Taillades, A. Commeyras, Tetrahedron 1979, 34, 2275;
- 26b R. Pascal, Eur. J. Org. Chem. 2003, 1813.
- 27
J. von Liebig, Liebigs Ann. Chem. 1860, 113, 246;
10.1002/jlac.18601130213 Google ScholarW. Langenbeck, Liebigs Ann. Chem. 1929, 469, 16.
- 28 A. W. Schwartz, M. Goverde, J. Mol. Evol. 1982, 18, 351; A. W. Schwartz, Naturwissenschaften 1983, 70, 373.
- 29 G. K. Mittapalli, Y. M. Osornio, M. A. Guerrero, K. R. Reddy, R. Krishnamurthy, A. Eschenmoser, Angew. Chem., Int. Ed. 2007, 46, 2478.
- 30 H. Bauer, Naturwissenschaften 1980, 67, 1.
- 31 D. Deamer, Microbiol. Mol. Biol. Rev. 1997, 239; J. B. Corliss, J. A. Baross, S. E. Hoffman, Oceanol. Acta 1981, 4 (Suppl.), 59.