The Biochemistry of Drug Metabolism – An Introduction
Part 2. Redox Reactions and Their Enzymes
Bernard Testa
Department of Pharmacy, University Hospital Centre (CHUV), Rue du Bugnon, CH-1011 Lausanne
Search for more papers by this authorStefanie D. Krämer
Department of Chemistry and Applied Biosciences, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich
Search for more papers by this authorBernard Testa
Department of Pharmacy, University Hospital Centre (CHUV), Rue du Bugnon, CH-1011 Lausanne
Search for more papers by this authorStefanie D. Krämer
Department of Chemistry and Applied Biosciences, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich
Search for more papers by this authorAbstract
This review continues a general presentation of the metabolism of drugs and other xenobiotics started in a recent issue of Chemistry & Biodiversity. This Part 2 presents the numerous oxidoreductases involved, their nomenclature, relevant biochemical properties, catalytic mechanisms, and the very diverse reactions they catalyze. Many medicinally, environmentally, and toxicologically relevant examples are presented and discussed. Cytochromes P450 occupy a majority of the pages of Part 2, but a large number of relevant oxidoreductases are also considered, e.g., flavin-containing monooxygenases, amine oxidases, molybdenum hydroxylases, peroxidases, and the innumerable dehydrogenases/reductases.
References
- 1 B. Testa, S. D. Krämer, ‘The Biochemistry of Drug Metabolism – An Introduction. Part 1: Principles and Overview’, Chem. Biodiv. 2006, 3, 1053–1101.
- 2 S. Rendic, F. J. Di Carlo, ‘ Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors’, Drug Metab. Rev. 1997, 29, 413–580; S. Rendic, ‘Summary of information on human CYP enzymes: Human P450 metabolism data’, Drug Metab. Rev. 2002, 34, 83–448.
- 3 O. Pelkonen, ‘ Human CYPs: in vivo and clinical aspects’, Drug Metab. Rev. 2002, 34, 37–46.
- 4 B. Testa, ‘The Metabolism of Drugs and Other Xenobiotics – Biochemistry of Redox Reactions’, Academic Press, London, 1995.
- 5 ‘Cytochrome P450. Structure, Mechanism, and Biochemistry’, 2nd edn., Ed. P. R. Ortiz de Montellano, Plenum Press, New York, 1996.
- 6 ‘ Handbook of Drug Metabolism’, Ed. T. F. Woolf, Dekker, New York, 1999.
- 7 ‘Enzyme Systems that Metabolise Drugs and Other Xenobiotics’, Ed. C. Ioannides, Wiley, Chichester, 2002.
- 8 ‘Drug–Drug Interactions’, Ed. A. D. Rodrigues, Dekker, New York, 2002.
- 9 B. Testa, W. Soine, ‘Principles of drug metabolism’, in ‘Burger's Medicinal Chemistry and Drug Discovery’, 6th edn., Ed. D. J. Abraham, Wiley-Interscience, Hoboken, 2003, Vol. 2, p. 431–498.
- 10 ‘Cytochrome P450 Protocols’, Eds. I. R. Phillips, E. A. Shephard, Humana Press, Totowa, 2006.
- 11 Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB), ‘Enzyme Nomenclature’, www.chem.qmul.ac.uk/iubmb/enzyme.
- 12 F. J. Gonzalez, ‘Molecular genetics of the P-450 superfamily’, Pharmacol. Ther. 1990, 45, 1–38.
- 13 D. R. Nelson, D. C. Zeldin, S. M. G. Hoffman, L. J. Maltais, H. M. Wain, D. W. Nebert, ‘Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative splice variants’, Pharmacogenetics 2004, 14, 1–18.
- 14a D. R. Nelson, ‘Cytochrome P450 homepage’, http://drnelson.utmem.edu/CytochromeP450.html;
- 14b http://drnelson.utmem.edu/Nomenclature.html;
- 14c http://drnelson.utmem.edu/hum.html;
- 14d http://drnelson.utmem.edu/P450lect.html;
- 14e http://drnelson.utmem.edu/P450trees.html.
- 15 ‘Directory of P450-containing Systems’, http://www.icgeb.org/~p450srv/.
- 16 ‘Brenda: The Comprehensive Enzyme Information System’, www.brenda.uni-koeln.de; ‘ExPASy Proteomics Server’, www.expasy.org.
- 17 T. A. Holton, F. Brugliera, D. R. Lester, Y. Tanaka, C. D. Hyland, J. G. T. Menting, C. Y. Lu, E. Fracy, T. W. Stevenson, E. C. Cornish, ‘Cloning and expression of cytochrome P450 genes controlling flower colour’, Nature 1993, 366, 276–279.
- 18 W. Y. Precious, J. Barrett, ‘Xenobiotic metabolism in helminths’, Parasitol. Today 1989, 5, 156–160.
- 19 X. Ding, L. S. Kaminsky, ‘ Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts’, Annu. Rev. Pharmacol. Toxicol. 2003, 43, 149–173.
- 20 A. E. Cribb, M. Peyron, S. Muruganandan, L. Schneider, ‘The endoplasmic reticulum in xenobiotic toxicity’, Drug Metab. Rev. 2005, 37, 405–442.
- 21 I. Hanukoglu, ‘Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells’, Drug Metab. Rev. 2006, 38, 171–196.
- 22 D. R. Nelson, H. W. Strobel, ‘On the membrane topology of vertebrate cytochrome P-450 proteins’, J. Biol. Chem. 1988, 263, 6038–6050.
- 23 R. J. Edwards, B. P. Murray, A. M. Singleton, A. R. Boobis, ‘Orientation of cytochromes P450 in the endoplasmic reticulum’, Biochemistry 1991, 30, 71–76.
- 24 F. Centero, C. Gutiérrez-Merino, ‘Location of functional centers in the microsomal cytochrome P450 system’, Biochemistry 1992, 31, 8473–8481.
- 25 B. S. Masters, C. C. Marohnic, ‘Cytochromes P450 – a family of proteins and scientists – understanding their relationships’, Drug Metab. Rev. 2006, 38, 209–225.
- 26a P. A. Williams, J. Cosme, A. Ward, H. C. Angove, D. M. Vinkovic, H. Jhoti, ‘Crystal structure of human cytochrome P450 2C9 with bound warfarin’, Nature 2003, 424, 464–468;
- 26b P. A. Williams, J. Cosme, D. M. Vinkovic, A. Ward, H. C. Angove, P. J. Day, C. Vonrhein, I. J. Tickle, H. Jhoti, ‘Crystal structure of human cytochrome P450 3A4 bound to metarypone and progesterone’, Science 2004, 305, 683–686.
- 27 F. J. Gonzalez, D. W. Nebert, ‘Evolution of the P450 gene superfamily: animal-plant ‘warfare’, molecular drive and human genetic differences in drug oxidation', Trends Genet. 1990, 6, 182–186; A. K. Daly, J. Brockmöller, F. Broly, M. Eichelbaum, W. E. Evans, F. J. Gonzalez, J. D. Huang, J. R. Idle, M. Ingelman-Sundberg, T. Ishizaki, E. Jacqz-Aigrain, U. A. Meyer, D. W. Nebert, V. M. Steen, C. R. Wolf, U. M. Zanger, ‘Nomenclature for human CYP2D6 alleles’, Pharmacogenetics 1996, 6, 193–201; homepage of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee, www.cypalleles.ki.se.
- 28 B. Oesch-Bartlomowicz, F. Oesch, ‘Mechanisms of toxification and detoxification that challenge drug candidates and drugs’, in ‘ADME-Tox Approaches’, Eds. B. Testa, H. van de Waterbeemd, Vol. 5 in ‘Comprehensive Medicinal Chemistry’, 2nd edn., Eds. D. J. Triggle, J. Taylor, Elsevier, Oxford, 2007, p. 193–214.
- 29 M. Ingelman-Sundberg, ‘Implications of polymorphic cytochrome P450-dependent drug metabolism for drug development’, Drug Metab. Dispos. 2001, 29, 570–573.
- 30 H. Reiser, ‘Pharmacogenetics and drug development’, Annu. Rep. Med. Chem. 2005, 40, 414– 427.
- 31 R. A. Totah, A. E. Rettie, ‘Principles of drug metabolism 3: Enzymes and tissues’, in ‘ADME-Tox Approaches’, Eds. B. Testa, H. van de Waterbeemd, Vol. 5 in ‘Comprehensive Medicinal Chemistry’, 2nd edn., Eds. D. J. Triggle, J. Taylor, Elsevier, Oxford, 2007, p. 167–191.
- 32 D. A. Smith, M. J. Ackland, B. C. Jones, ‘Properties of cytochrome P450 isoenzymes and their substrates. Part 1: active site characteristics’, Drug Discov. Today 1997, 2, 406–414; D. A. Smith, M. J. Ackland, B. C. Jones, ‘Properties of cytochrome P450 isoenzymes and their substrates. Part 2: properties of cytochrome P450 substrates’, Drug Discov. Today 1997, 2, 479–486.
- 33 D. A. Smith, S. M. Abel, R. Hyland, B. C. Jones, ‘ Human cytochrome P450s: selectivity and measurement in vivo’, Xenobiotica 1998, 28, 1095–1128.
- 34 D. F. V. Lewis, M. Dickins, P. J. Eddershaw, M. H. Tarbit, P. S. Goldfarb, ‘Cytochrome P450 substrate specificities, substrate structural templates and enzyme active site geometries’, Drug Metab. Drug Interact. 1999, 15, 1–49.
- 35 D. F. V. Lewis, ‘On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics’, Biochem. Pharmacol. 2000, 60, 293–306.
- 36 S. A. Wrighton, E. G. Schuetz, K. E. Thummel, D. D. Shen, K. R. Korzekwa, P. B. Watkins, ‘The human CYP3A subfamily: practical considerations’, Drug Metab. Rev. 2000, 32, 339–361.
- 37 W. R. Scheidt, C. A. Reed, ‘Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins’, Chem. Rev. 1981, 81, 543–555.
- 38 D. F. V. Lewis, ‘Physical methods in the study of the active site geometry of cytochromes P-450’, Drug Metab. Rev. 1986, 17, 1–66.
- 39 W. F. Trager, ‘The postenzymatic chemistry of activated oxygen’, Drug Metab. Rev. 1982, 13, 51– 69.
- 40 M. J. Coon, A. D. N. Vaz, D. F. McGinnity, H. M. Peng, ‘Multiple activated oxygen species in P450 catalysis. Contributions to specificity in drug metabolism’, Drug Metab. Dispos. 1998, 26, 1190–1193.
- 41 T. M. Makris, R. Davydov, I. G. Denisov, B. M. Hoffman, S. G. Sligar, ‘Mechanistic enzymology of oxygen activation by the cytochromes P450’, Drug Metab. Rev. 2002, 34, 691–708.
- 42 A. L. Shen, M. J. Christensen, C. B. Kasper, ‘NADPH-Cytochrome P450 oxidoreductase. The role of cysteine 566 in catalysis and cofactor binding’, J. Biol. Chem. 1991, 266, 19976–19980.
- 43 K. Shirabe, T. Yubisui, T. Nishino, M. Takeshita, ‘Role of cysteine residues in human NADH-cytochrome b5 reductase studied by site-directed mutagenesis’, J. Biol. Chem. 1991, 266, 7531–7536.
- 44 D. N. Li, M. P. Pritchard, S. T. Hanlon, B. Burchell, C. R. Wolf, T. Friedberg, ‘Competition between cytochrome P-450 isozymes for NADPH-cytochrome P-450 oxidoreductase affects drug metabolism’, J. Pharmacol. Exp. Ther. 1999, 289, 661–667.
- 45 C. R. Nishida, G. Knudsen, W. Straub, P. R. Ortiz de Montellano, ‘Electron supply and catalytic oxidation of nitrogen by cytochrome P450 and nitric oxide synthase’, Drug Metab. Rev. 2002, 34, 479–501.
- 46 J. R. Kurian, S. U. Bajad, J. L. Miller, N. A. Chin, L. A. Trepanier, ‘NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans’, J. Pharmacol. Exp. Ther. 2004, 311, 1171–1178.
- 47 P. R. Ortiz de Montellano, ‘Cytochrome P-450 catalysis: radical intermediates and dehydrogenation reaction’, Trends Pharmacol. Sci. 1989, 10, 354–359.
- 48 L. Koymans, G. M. Donné-Op den Kelder, J. M. te Koppele, N. P. E. Vermeulen, ‘Cytochromes P450: Their active-site structure and mechanism of oxidation’, Drug Metab. Rev. 1993, 25, 325–387.
- 49 J. Everse, ‘The structure of heme proteins compounds I and II: some misconceptions’, Free Radical Biol. Med. 1998, 24, 1338–1346.
- 50 F. P. Guengerich, ‘Cytochrome P450 3A4: Regulation and role in drug metabolism’, Annu. Rev. Pharmacol. Toxicol. 1999, 39, 1–17.
- 51 I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G. A. Petsko, S. G. Sligar, ‘The catalytic pathway of cytochrome P450 cam at atomic resolution’, Science 2000, 287, 1615–1622.
- 52 F. P. Guengerich, ‘Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity’, Chem. Res. Toxicol. 2001, 14, 611–650.
- 53 M. T. Green, J. H. Dawson, H. B. Gray, ‘Oxoiron(IV) in chloroperoxidase compound II is basic: Implications for P450 chemistry’, Science 2004, 304, 1653–1656.
- 54 W. F. Trager, ‘Principles of drug metabolism 1: Redox reactions’, in ‘ADME-Tox Approaches’, Eds. B. Testa, H. van de Waterbeemd, Vol. 5 in ‘Comprehensive Medicinal Chemistry’, 2nd edn., Eds. D. J. Triggle, J. Taylor, Elsevier, Oxford, 2007, p. 87–132.
- 55 D. M. Ziegler, ‘Flavin-containing monooxygenases: catalytic mechanism and substrate specificities’, Drug Metab. Rev. 1988, 19, 1–32.
- 56 J. R. Cashman, ‘Structural and catalytic properties of the mammalian flavin-containing monooxygenases’, Chem. Res. Toxicol. 1995, 8, 165–181.
- 57 I. R. Phillips, C. T. Dolphin, P. Clair, M. R. Hadley, A. J. Hutt, R. R. McCombie, R. L. Smith, E. A. Shephard, ‘The molecular biology of flavin-containing monooxygenases of man’, Chem.-Biol. Interact. 1995, 96, 17–32.
- 58 A. A. Elfarra, ‘Potential role of the flavin-containing monooxygenases in the metabolism of endogenous compounds’, Chem.-Biol. Interact. 1995, 96, 47–55.
- 59 L. L. Poulsen, D. M. Ziegler, ‘Multisubstrate flavin-containing monooxygenases: applications of mechanism to specificity’, Chem.-Biol. Interact. 1995, 96, 57–73.
- 60 J. R. Cashman, ‘ Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism’, Curr. Drug Metab. 2000, 1, 181–191.
- 61 D. M. Ziegler, ‘An overview of the mechanism, substrate specificities, and structure of FMOs’, Drug Metab. Rev. 2002, 34, 503–511.
- 62 J. R. Cashman, ‘The role of flavin-containing monooxygenases in drug metabolism and development’, Curr. Opin. Drug Discov. Dev. 2003, 6, 486–493.
- 63 J. R. Cashman, ‘The implications of polymorphisms in mammalian flavin-containing monooxygenases in drug discovery and development’, Drug Discov. Today 2004, 9, 574–581.
- 64 S. K. Krueger, D. E. Williams, ‘Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism’, Pharmacol. Ther. 2005, 106, 357–387.
- 65 J. R. Cashman, ‘Some distinctions between flavin-containing and cytochrome P450 monooxygenases’, Biochem. Biophys. Res. Commun. 2005, 338, 599–604; J. R. Cashman, J. Zhang, ‘ Human flavin-containing monooxygenases’, Annu. Rev. Pharmacol. Toxicol. 2006, 46, 65–100.
- 66 R. N. Hines, K. A. Hopp, J. Franco, K. Saeian, F. P. Begun, ‘Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase’, Mol. Pharmacol. 2002, 62, 320–325.
- 67 S. G. Sligar, M. H. Gelb, D. C. Heimbrook, ‘Bio-organic chemistry and cytochrome P450-dependent catalysis’, Xenobiotica 1984, 14, 63–86.
- 68 F. P. Guengerich, T. L. Macdonald, ‘Chemical mechanisms of catalysis by cytochromes P-450: a unified view’, Acc. Chem. Res. 1984, 17, 9–16.
- 69 J. T. Groves, ‘Key elements of the chemistry of cytochrome P-450. The oxygen rebound mechanism’, J. Chem. Educ. 1985, 62, 928–931.
- 70 R. E. White, J. P. Miller, L. V. Favreau, A. Bhattacharyya, ‘Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450’, J. Am. Chem. Soc. 1986, 108, 6024–6031.
- 71 J. K. Atkinson, K. U. Ingold, ‘Cytochrome P450 hydroxylation of hydrocarbons: variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes’, Biochemistry 1993, 32, 9209–9214.
- 72 R. E. White, M. B. McCarthy, K. D. Egeberg, S. G. Sligar, ‘Regioselectivity in the cytochrome P-450: control by protein constraints and by chemical reactivity’, Arch. Biochem. Biophys. 1984, 228, 493–502.
- 73 L. Perbellini, F. Brugnone, V. Cocheo, E. De Rosa, G. B. Bartolucci, ‘Identification of the n-heptane metabolites in rat and human urine’, Arch. Toxicol. 1986, 58, 229–234.
- 74 T. Ishida, ‘Biotransformation of terpinoids by mammals, microorganisms, and plant-cultured cells’, Chem. Biodiv. 2005, 2, 569–590.
- 75 M. Miyazawa, M. Shinto, T. Shimada, ‘Sex differences in the metabolism of (+)- and (−)-limonene enantiomers to carveol and perillyl alcohol derivatives by cytochrome P450 enzymes in rat liver microsomes’, Chem. Res. Toxicol. 2002, 15, 15–20.
- 76 R. E. McMahon, H. R. Sullivan, J. C. Craig, W. E. Pereira Jr., ‘The microsomal oxygenation of ethylbenzene: isotopic, stereochemical, and induction studies’, Arch. Biochem. Biophys. 1969, 132, 575–577.
- 77 L. Drummond, J. Caldwell, H. K. Wilson, ‘The metabolism of ethylbenzene and styrene to mandelic acid: stereochemical considerations’, Xenobiotica 1989, 19, 199–207.
- 78 S. K. Paulson, J. Y. Zhang, A. P. Breau, J. D. Hribar, N. W. K. Liu, S. M. Jessen, Y. M. Lawal, J. N. Cogburn, C. J. Gresk, C. S. Markos, T. J. Maziasz, G. L. Schoenhard, E. G. Burton, ‘Pharmacokinetics, tissue distribution, metabolism, and excretion of celecoxib in rats’, Drug Metab. Dispos. 2000, 28, 514–521.
- 79 S. K. Paulson, J. D. Hribar, N. W. K. Liu, E. Hajdu, R. H. Bible Jr., A. Piergies, A. Karim, ‘Metabolism and excretion of [14C]celecoxib in healthy male volunteers’, Drug Metab. Dispos. 2000, 28, 308–314.
- 80 B. Eiermann, P. O. Edlund, A. Tjernberg, P. Dalén, M. L. Dahl, L. Bertilsson, ‘1- and 3-hydroxylations, in addition to 4-hydroxylation, of debrisoquine are catalyzed by cytochrome P450 2D6 in humans’, Drug Metab. Dispos. 1998, 26, 1096–1101.
- 81 I. Midgley, K. Fitzpatrick, S. J. Wright, B. A. John, A. J. Peard, R. M. Major, J. D. Major, J. D. Holding, A. McBurney, R. Anacardio, R. Novellini, M. P. Ferrari, ‘Species differences in the pharmacokinetics and metabolism of reparixin in rat and dog’, Xenobiotica 2006, 36, 419–440.
- 82 M. M. Callahan, R. S. Robertson, M. J. Arnaud, A. R. Branfman, M. F. McComish, D. W. Yesair, ‘ Human metabolism of [1-methyl-14C]- and [2-14C]caffeine after oral administration’, Drug Metab. Dispos. 1982, 10, 417–423.
- 83 F. Berthou, B. Guillois, C. Riche, Y. Dreano, E. Jacqz-Aigrain, P. H. Beaune, ‘Interspecies variations in caffeine metabolism related to cytochrome P4501A’, Xenobiotica 1992, 22, 671–680.
- 84 J. O. Miners, D. J. Birkett, ‘The use of caffeine as a metabolic probe for human drug metabolizing enzymes’, Gen. Pharmacol. 1996, 27, 245–249.
- 85 G. Ginsberg, D. Hattis, A. Russ, B. Sonawane, ‘Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children's risks from environmental agents’, J. Toxicol. Environ. Health A 2004, 67, 297–329.
- 86 A. E. Mutlib, W. L. Nelson, ‘Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the N-dealkylation processes’, Drug Metab. Dispos. 1990, 18, 331–337.
- 87 A. E. Mutlib, W. L. Nelson, ‘Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the O-demethylation processes’, Drug Metab. Dispos. 1990, 18, 309–314.
- 88 M. Eichelbaum, M. Ende, G. Remberg, M. Schomerus, H. J. Dengler, ‘The metabolism of DL-[14C]verapamil in man’, Drug Metab. Dispos. 1979, 7, 145–148.
- 89 L. Shen, J. F. Fitzloff, C. S. Cook, ‘Differential enantioselectivity and product-dependent activation and inhibition in metabolism of verapamil by human CYP3As’, Drug Metab. Dispos. 2004, 32, 186–196.
- 90 S. Vickers, S. L. Polsky, ‘The biotransformation of nitrogen-containing xenobiotics to lactams’, Curr. Drug Metab. 2000, 1, 357–389.
- 91 J. Hukkanen, P. Jacob III, N. L. Benowitz, ‘Metabolism and disposition of nicotine’, Pharmacol. Rev. 2005, 57, 79–115.
- 92 D. Yildiz, ‘Nicotine, its metabolism and an overview of its biological effects’, Toxicon 2004, 43, 619–632.
- 93 D. McKillop, A. D. McCormick, G. S. Miles, P. J. Phillips, K. J. Pickup, N. Bushby, M. Hutchison, ‘In vitro metabolism of gefitinib in human liver microsomes’, Xenobiotica 2004, 34, 983–1000.
- 94 D. McKillop, A. D. McCormick, A. Millar, G. S. Miles, P. J. Phillips, M. Hutchison, ‘Cytochrome P450-dependent metabolism of gefitinib’, Xenobiotica 2005, 35, 39–50.
- 95 H. M. Peng, G. M. Raner, A. D. N. Vaz, M. J. Coon, ‘Oxidative cleavage of esters and amides to carbonyl products by cytochrome P450’, Arch. Biochem. Biophys. 1995, 318, 333–339.
- 96 N. Yumibe, K. Huie, K. J. Chen, M. Snow, R. P. Clement, M. N. Cayen, ‘Identification of human liver cytochrome P450 enzymes that metabolize the nonsedative antihistamine loratadine. Formation of descarboxyethoxyloratadine by CYP3A4 and CYP2D6’, Biochem. Pharmacol. 1996, 51, 165–172.
- 97 R. Ramanathan, N. Alvarez, A. D. Su, S. Chowdhury, K. Alton, K. Stauber, J. Patrick, ‘Metabolism and excretion of loratadine in male and female mice, rats and monkeys’, Xenobiotica 2005, 35, 155–189.
- 98 C. S. Lieber, L. M. DeCarli, ‘ Hepatic microsomal ethanol-oxidizing system’, J. Biol. Chem. 1970, 245, 2505–2512.
- 99 H. Asai, S. Imaoka, T. Kuroki, T. Monna, Y. Funae, ‘Microsomal ethanol oxidizing system activity by human hepatic cytochrome P450s’, J. Pharmacol. Exp. Ther. 1996, 277, 1004–1009.
- 100 T. Matsunaga, N. Kishi, H. Tanaka, K. Watanabe, H. Yoshimura, I. Yamamoto, ‘Major cytochrome P450 enzyme responsible for oxidation of secondary alcohols to the corresponding ketones in mouse hepatic microsomes’, Drug Metab. Dispos. 1998, 26, 1045–1047.
- 101 S. Kunitoh, S. Imaoka, T. Hiroi, Y. Yabusaki, T. Monna, Y. Funae, ‘Acetaldehyde as well as ethanol is metabolized by human CYP2E1’, J. Pharmacol. Exp. Ther. 1997, 280, 527–532.
- 102 D. K. Spracklin, D. C. Hankins, J. M. Fisher, K. E. Thummel, E. D. Kharasch, ‘Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro’, J. Pharmacol. Exp. Ther. 1997, 281, 400–411.
- 103 J. Gut, U. Christen, J. Huwyler, ‘Mechanisms of halothane toxicity: novel insights’, Pharmacol. Ther. 1993, 58, 133–155.
- 104 K. J. Garton, P. Yuen, J. Meinwald, K. E. Thummel, E. D. Kharasch, ‘Stereoselective metabolism of enflurane by human liver cytochrome P450 2E1’, Drug Metab. Dispos. 1995, 23, 1426–1430.
- 105 J. Halpert, ‘Covalent modification of lysine during the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol’, Biochem. Pharmacol. 1981, 30, 875–881.
- 106 K. Watanabe, S. Narimatsu, I. Yamamoto, H. Yoshimura, ‘ Hepatic microsomal oxygenation of aldehydes to carboxylic acids’, Biochem. Biophys. Res. Commun. 1990, 166, 1308–1312.
- 107 K. Watanabe, S. Narimatsu, I. Yamamoto, H. Yoshimura, ‘Oxygenation mechanism of aldehyde to carboxylic acid catalyzed by a cytochrome P450 isozyme’, J. Biol. Chem. 1991, 266, 2709–2711.
- 108 R. A. Stearns, P. K. Chakravarty, R. Chen, S. H. Chiu, ‘Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes’, Drug Metab. Dispos. 1995, 23, 207–215.
- 109 M. Bartók, K. L. Láng, ‘Oxiranes’, in ‘Small Ring Heterocycles, Part 3’, Ed. A. Hassner, Wiley, New York, 1985, p. 1–196.
- 110 C. Chiappe, A. De Rubertis, G. Amato, P. G. Gervasi, ‘Stereochemistry of the biotransformation of 1-hexene and 2-methyl-1-hexene with rat liver microsomes and purified P450s of rats and humans’, Chem. Res. Toxicol. 1998, 11, 1487–1493.
- 111 C. Chiappe, A. De Rubertis, M. De Carlo, G. Amato, P. G. Gervasi, ‘Stereochemial aspects in the 4-vinylcyclohexene biotransformation with rat liver microsomes and purified P450s. Monoepoxides and diols’, Chem. Res. Toxicol. 2001, 14, 492–499.
- 112 R. E. Miller, F. P. Guengerich, ‘Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide’, Biochemistry 1982, 21, 1090–1097.
- 113 K. Lertratanangkoon, M. G. Horning, ‘Metabolism of carbamazepine’, Drug Metab. Rev. 1982, 10, 1–10.
- 114 B. Rambeck, T. May, U. Juergens, ‘Serum concentrations of carbamazepine and its epoxide and diol metabolites in epileptic patients: the influence of dose and comedication’, Ther. Drug Monit. 1987, 9, 298–303.
- 115 R. E. Pearce, G. R. Vakkalagadda, J. S. Leeder, ‘Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites’, Drug Metab. Dispos. 2002, 30, 1170–1179.
- 116 J. Seidegard, J. W. DePierre, ‘Microsomal epoxide hydrolase. Properties, regulation and function’, Biochim. Biophys. Acta 1983, 695, 251–270.
- 117 B. Testa, ‘Principles of drug metabolism 2: Hydrolysis and conjugation reactions’, in ‘ADME-Tox Approaches’, Eds. B. Testa, H. van de Waterbeemd, Vol. 5 in ‘Comprehensive Medicinal Chemistry’, 2nd edn., Eds. D. J. Triggle, J. Taylor, Elsevier, Oxford, 2007, p. 133–166.
- 118 R. A. Halpin, A. G. Porras, L. A. Geer, M. R. Davis, D. Cui, G. A. Doss, E. Woolf, D. Musson, C. Matthews, R. Mazenko, J. I. Schwartz, K. C. Lasseter, K. P. Vyas, T. A. Baillie, ‘The disposition and metabolism of rofecoxib, a potent and selective cyclooxygenase-2 inhibitor, in human subjects’, Drug Metab. Dispos. 2002, 30, 684–693.
- 119 T. S. Dowers, D. A. Rock, D. A. Rock, B. N. S. Perkins, J. P. Jones, ‘An analysis of the regioselectivity of aromatic hydroxylation and N-oxygenation by cytochrome P450 enzymes’, Drug Metab. Dispos. 2004, 32, 328–332.
- 120 D. K. Dalvie, A. S. Katgutkar, S. C. Khojasteh-Bakht, R. S. Obach, J. P. O'Donnell, ‘Biotransformation reactions of five-membered aromatic heterocyclic rings’, Chem. Res. Toxicol. 2002, 15, 269–299.
- 121 P. Morgan, J. L. Maggs, P. C. B. Page, B. K. Park, ‘Oxidative dehalogenation of 2-fluoro-17α-ethynylestradiol in vivo. A distal structure-metabolism relationship of 17α-ethynylation’, Biochem. Pharmacol. 1992, 44, 1717–1724.
- 122 T. Ohe, T. Mashino, M. Hirobe, ‘Substituent elimination from p-substituted phenols by cytochrome P450. ipso-substitution by the oxygen atom of the active species’, Drug Metab. Dispos. 1997, 25, 116–122.
- 123 S. Safe, D. Jones, O. Hutzinger, ‘Metabolism of 4,4’-dihalogenobiphenyls', J. Chem. Soc., Perkin Trans. 1 1976, 357–359.
- 124 T. Walle, J. E. Oatis Jr., U. K. Walle, D. R. Knapp, ‘New ring-hydroxylated metabolites of propranolol’, Drug Metab. Dispos. 1982, 10, 122–127.
- 125 W. L. Nelson, M. J. Bartels, ‘Stereoselectivity in the aromatic hydroxylation of propranolol in rats’, Drug Metab. Dispos. 1984, 12, 382–384.
- 126 W. L. Nelson, M. J. Bartels, P. J. Bednarski, S. Zhang, K. Messick, J. S. Horng, R. R. Ruffolo Jr., ‘The 3,4-catechol derivative of propranolol, a minor dihydroxylated metabolite’, J. Med. Chem. 1984, 27, 857–861.
- 127 R. E. Talaat, W. L. Nelson, ‘Regioisomeric aromatic dihydroxylation of propranolol’, Drug Metab. Dispos. 1988, 16, 207–211, 212–216.
- 128 S. A. Ward, T. Walle, U. K. Walle, G. R. Wilkinson, R. A. Branch, ‘Propranolol metabolism is determined by both mephenytoin and debrisoquine hydroxylase activities’, Clin. Pharmacol. Ther. 1989, 45, 72–79.
- 129 M. J. Fasco, P. P. Dymerski, J. D. Wos, L. S. Kaminsky, ‘A new warfarin metabolite: structure and function’, J. Med. Chem. 1978, 21, 1054–1059.
- 130 L. S. Kaminsky, ‘Warfarin as a probe of cytochromes P450 function’, Drug Metab. Rev. 1989, 20, 479–487.
- 131 A. E. Rettie, K. R. Korzekwa, K. L. Kunze, R. F. Lawrence, A. C. Eddy, T. Aoyama, H. V. Gelboin, F. J. Gonzalez, W. F. Trager, ‘ Hydroxylation of warfarin by cDNA-expressed cytochromes P450: A role for P4502C9 in the etiology of (S)-warfarin-drug interactions’, Chem. Res. Toxicol. 1992, 5, 54–59.
- 132 Z. Zhang, M. J. Fasco, Z. Huang, F. P. Guengerich, L. S. Kaminsky, ‘ Human cytochromes P4501A1 and P4501A2: R-Warfarin metabolism as a probe’, Drug Metab. Dispos. 1995, 23, 1339–1345.
- 133 J. S. Ngui, Q. Chen, M. Shou, R. W. Wang, R. A. Stearns, T. A. Baillie, W. Tang, ‘In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4′- and 10-hydroxywarfarin’, Drug Metab. Dispos. 2001, 29, 877–886.
- 134 I. N. H. White, ‘Suicidal destruction of cytochrome P-450 by ethynyl substituted compounds’, Pharm. Res. 1984, 1, 141–148.
- 135 S. E. Schmid, W. Y. W. Au, D. E. Hill, F. F. Kadlubar, W. Slikker Jr., ‘Cytochrome P450-dependent oxidation of the 17a-ethynyl group of synthetic steroids’, Drug Metab. Dispos. 1983, 11, 531– 536.
- 136 E. S. Roberts, N. E. Hopkins, W. L. Alworth, P. F. Hollenberg, ‘Mechanism-based inactivation of cytochrome P450 2B1 by 2-ethynylnaphthalene: Identification of an active-site peptide’, Chem. Res. Toxicol. 1993, 6, 470–479.
- 137 A. Wade, A. M. Symons, L. Martin, D. V. Parke, ‘Metabolic oxidation of the ethynyl group in 4-ethynylbiphenyl’, Biochem. J. 1979, 184, 509–517.
- 138 A. Wade, A. M. Symons, L. Martin, D. V. Parke, ‘The metabolic oxidation of the ethynyl group in 4-ethynylbiphenyl in vitro’, Biochem. J. 1980, 188, 867–872.
- 139 I. N. H. White, ‘Structure-activity relationships in the destruction of cytochrome P450 mediated by certain ethynyl-substituted compounds in rats’, Biochem. Pharmacol. 1980, 29, 3253–3255.
- 140 P. W. Fan, C. Gu, S. A. Marsh, J. C. Stevens, ‘Mechanism-based inactivation of cytochrome P450 2B6 by a novel terminal acetylene inhibitor’, Drug Metab. Dispos. 2003, 31, 28–36.
- 141 K. K. Khan, Y. Q. He, M. A. Correia, J. R. Halpert, ‘Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: Selective inactivation of P450 3A4’, Drug Metab. Dispos. 2002, 30, 985–990.
- 142 J. W. Gorrod, ‘Differentiation of various types of biological oxidation of nitrogen in organic compounds’, Chem.-Biol. Interact. 1973, 7, 289–303.
- 143 D. H. Lang, C. K. Yeung, R. M. Peter, C. Ibarra, R. Gasser, K. Itagaki, R. M. Philpot, A. E. Rettie, ‘Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes’, Biochem. Pharmacol. 1998, 56, 1005–1012.
- 144 G. Caron, G. Ermondi, D. Boschi, P. A. Carrupt, R. Fruttero, B. Testa, A. Gasco, ‘Structure–property relations in the basicity and lipophilicity of arylalkylamine oxides’, Helv. Chim. Acta 1999, 82, 1630–1639.
- 145 E. M. Hawes, T. J. Jawoeski, K. K. Midha, G. McKay, J. W. Hubbard, E. D. Korchinski, ‘In vivo metabolism of N-oxides’, in ‘N-Oxidation of Drugs: Biochemistry, Pharmacology, Toxicology’, Eds. P. Hlavida, L. A. Damani, Chapman and Hall, London, 1991, p. 263–286.
- 146 U. Breyer-Pfaff, ‘The metabolic fate of amitriptyline, nortriptyline and amitryptylinoxide in man’, Drug Metab. Rev. 2004, 36, 723–746.
- 147 J. R. Cashman, S. B. Park, C. E. Berkman, L. E. Cashman, ‘Role of hepatic flavin-containing monooxygenase 3 in drug and chemical metabolism in adult humans’, Chem.-Biol. Interact. 1995, 96, 33–46.
- 148 S. Øie, T. W. Guentert, L. Tolentino, G. Hermodsson, ‘Pharmacokinetics of moclobemide in male, virgin female, pregnant and nursing rats’, J. Pharm. Pharmacol. 1992, 44, 413–418.
- 149 J. R. Cashman, Y. N. Xiong, L. Xu, A. Janowsky, ‘N-Oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (Form 3): Role in bioactivation and detoxication’, J. Pharmacol. Exp. Ther. 1999, 288, 1251–1260.
- 150 J. Lin, C. E. Berkman, J. R. Cashman, ‘N-Oxygenation of primary amines and hydroxylamines and retroreduction of hydroxylamines by adult human liver microsomes and adult human flavin-containing monooxygenase 3’, Chem. Res. Toxicol. 1996, 9, 1183–1193.
- 151 J. Lin, J. R. Cashman, ‘N-Oxygenation of phenylethylamine to the trans-oxime by adult human liver flavin-containing monooxygenase and retroreduction of phenylethylamine hydroxylamine by human liver microsomes’, J. Pharmacol. Exp. Ther. 1997, 282, 1269–1279.
- 152 K. E. Mc Lane, J. Fisher, K. Ramakrishnan, ‘Reductive drug metabolism’, Drug Metab. Rev. 1983, 14, 741–799.
- 153 F. P. Guengerich, R. H. Böcker, ‘Cytochrome P450-catalyzed dehydrogenation of 1,4-dihydropyridines’, J. Biol. Chem. 1988, 263, 8168–8175.
- 154 F. P. Guengerich, W. R. Brian, M. Iwasaki, M. A. Sari, C. Bäärnhielm, P. Berntsson, ‘Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P450 IIIA4’, J. Med. Chem. 1991, 34, 1838–1844.
- 155 F. P. Guengerich, ‘N-Hydroxylarylamines’, Drug Metab. Rev. 2002, 34, 607–623; D. Kim, F. P. Guengerich, ‘Cytochrome P450 activation of arylamines and heterocyclic amines’, Annu. Rev. Pharmacol. Toxicol. 2005, 45, 27–49.
- 156 G. P. Ford, J. W. Thompson, ‘Regiochemistry of nucleophilic attack by the guanine 2-amino group at the ring positions of nitrenium ions derived from carcinogenic polycyclic arylamines and nitroarenes: Molecular orbital calculations and simple models’, Chem. Res. Toxicol. 1999, 12, 53–59; G. P. Ford, P. S. Herman, ‘Relative stability of nitrenium ions derived from polycyclic aromatic amines. Relationship to mutagenicity’, Chem.-Biol. Interact. 1992, 81, 1–18; G. P. Ford, G. R. Griffin, ‘Relative stability of nitrenium ions derived from heterocyclic amine food carcinogens. Relationship to mutagenicity’, Chem.-Biol. Interact. 1992, 81, 19–33; R. S. Kerdar, D. Dehner, D. Wild, ‘Reactivity and genotoxicity of arylnitrenium ions in bacterial and mammalian cells’, Toxicol. Lett. 1993, 67, 73–85.
- 157 M. D. Tingle, R. Mahmud, J. L. Maggs, M. Pirmohamed, B. K. Park, ‘Comparison of the metabolism and toxicity of dapsone in rat, mouse and man’, J. Pharmacol. Exp. Ther. 1997, 283, 817–823.
- 158 R. P. Reilly, F. H. Bellevue III, P. M. Woster, C. K. Svensson, ‘Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone’, Biochem. Pharmacol. 1998, 55, 803–810.
- 159 A. E. Cribb, M. Miller, J. S. Leeder, J. Hill, S. P. Spielberg, ‘Reactions of the nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced glutathione’, Drug Metab. Dispos. 1991, 19, 900–906.
- 160 A. E. Cribb, S. P. Spielberg, ‘Sulfamethoxazole is metabolized to the hydroxylamine in humans’, Clin. Pharmacol. Ther. 1992, 51, 522–526.
- 161 R. J. Turesky, A. Constable, J. Richoz, N. Varga, J. Markovic, M. V. Martin, F. P. Guengerich, ‘Activation of heterocyclic aromatic amines by rat and human microsomes and by purified rat and human cytochrome P450 1A2’, Chem. Res. Toxicol. 1998, 11, 925–936.
- 162 L. Koymans, G. M. Donné-Op den Kelder, J. M. te Koppele, N. P. E. Vermeulen, ‘Generalized cytochrome P450-mediated oxidation and oxygenation reactions in aromatic substrates with activated NH, OH, CH, or SH substituents’, Xenobiotica 1993, 23, 633–648.
- 163 A. Dipple, C. J. Michejda, E. K. Weisburger, ‘Metabolism of chemical carcinogens’, Pharmacol. Ther. 1985, 27, 265–296.
- 164 S. D. Nelson, ‘Arylamines and arylamides: Oxidation mechanisms’, in ‘Bioactivation of Foreign Compounds’, Ed. M. W. Anders, Academic Press, Orlando, 1985, p. 349–374.
- 165 B. Lindeke, ‘The non- and postenzymatic chemistry of N-oxygenated molecules’, Drug Metab. Rev. 1982, 13, 71–121.
- 166 L. Koymans, J. H. Van Lenthe, G. M. Donné-Op den Kelder, N. P. E. Vermeulen, ‘Mechanisms of oxidation of phenacetin to reactive metabolites by cytochrome P450: A theoretical study involving radical intermediates’, Mol. Pharmacol. 1990, 37, 452–460.
- 167 A. W. Nichols, I. D. Wilson, M. Godejohann, I. K. Nicholson, J. P. Stockcor, ‘Identification of phenacetin metabolites in human urine after administration of phenacetin-C2H3: Measurement of futile metabolic deacetylation vis HPLC/MS-SPE-NMR and HPLC-ToF MS’, Xenobiotica 2006, 36, 615–629.
- 168 P. P. Fu, ‘Metabolism of nitro-polycyclic aromatic hydrocarbons’, Drug Metab. Rev. 1990, 22, 209–268.
- 169 S. C. Mitchell, R. H. Waring, ‘The early history of xenobiotic sulfoxidation’, Drug Metab. Rev. 1985, 16, 255–284.
- 170 S. Oae, A. Mikami, T. Matsuura, K. Ogawa-Asada, Y. Watanabe, K. Fujimori, T. Iyanagi, ‘Comparison of sulfide oxygenation mechanism for liver microsomal FAD-containing monooxygenase with that for cytochrome P-450’, Biochem. Biophys. Res. Commun. 1985, 131, 567–573.
- 171 K. A. Usmani, E. D. Karoly, E. Hodgson, R. L. Rose, ‘In vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monooxygenase isoforms with particular reference to the CYP2C subfamily’, Drug Metab. Dispos. 2004, 32, 333–339.
- 172 G. Caron, P. Gaillard, P. A. Carrupt, B. Testa, ‘Lipophilicity behavior of model and medicinal compounds containing a sulfide, sulfoxide, or sulfone moiety’, Helv. Chim. Acta 1997, 80, 449–462.
- 173 D. D. S. Tang-Liu, R. M. Matsumoto, J. I. Usansky, ‘Clinical pharmacokinetics and drug metabolism of tazarotene’, Clin. Pharmacokinet. 1999, 37, 273–287.
- 174 M. Attar, D. Dong, K. H. J. Ling, D. D. S. Tang-Liu, ‘Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotene acid in humans’, Drug Metab. Dispos. 2003, 31, 476–481.
- 175 A. E. Rettie, M. P. Lawton, A. Jafar, M. Sadeque, G. P. Meier, R. M. Philpot, ‘Prochiral sulfoxidation as a probe for multiple forms of the microsomal flavin-containing monooxygenase: Studies with rabbit FMO1, FMO2, FMO3 and FMO5 expressed in Escherichia coli’, Arch. Biochem. Biophys. 1994, 311, 369–377.
- 176 J. R. Cashman, ‘Stereoselectivity in S- and N-oxygenation by the mammalian flavin-containing and cytochrome P450 monooxygenases’, Drug Metab. Rev. 1998, 30, 675–707.
- 177 H. B. Hucker, S. C. Stauffer, S. D. White, R. E. Rhodes, B. H. Arison, E. R. Umbenhauer, R. J. Bower, F. G. McMahon, ‘Physiologic disposition and metabolic fate of a new anti-inflammatory agent, sulindac in the rat, dog, rhesus monkey, and man’, Drug Metab. Dispos. 1973, 1, 721– 736.
- 178 M. A. Hamman, B. D. Haehner-Daniels, S. A. Wrighton, A. E. Rettie, S. D. Hall, ‘Stereoselective sulfoxidation of sulindac sulfide by flavin-containing monooxygenases’, Biochem. Pharmacol. 2000, 60, 7–17.
- 179 D. M. Ziegler, ‘Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases’, Annu. Rev. Pharmacol. Toxicol. 1993, 33, 179–199.
- 180 K. L. Taylor, D. M. Ziegler, ‘Studies on substrate specificity of the hog liver flavin-containing monooxygenase. Anionic organic sulfur compounds’, Biochem. Pharmacol. 1987, 36, 141–146.
- 181 C. J. Decker, M. S. Rashed, T. A. Baillie, D. Maltby, M. A. Correia, ‘Oxidative metabolism of spironolactone: evidence for the involvement of electrophilic thiosteroid species in drug-mediated destruction of rat hepatic cytochrome P450’, Biochemistry 1989, 28, 5128–5136.
- 182 C. J. Decker, J. R. Cashman, K. Sugiyama, D. Maltby, M. A. Correia, ‘Formation of glutathionyl-spironolactone disulfide by rat liver cytochromes P450 or hog liver flavin-containing monooxygenases: a functional probe of two-electron oxidations of the thiosteroid’, Chem. Res. Toxicol. 1991, 4, 669–677.
- 183 C. Teyssier, L. Guenot, M. Suschetet, M. H. Siess, ‘Metabolism of diallyl disulfide by human liver microsomal cytochromes P450 and flavin-containing monooxygenases’, Drug Metab. Dispos. 1999, 27, 835–841.
- 184 E. Germain, J. Chevalier, M. H. Siess, C. Teyssier, ‘ Hepatic metabolism of diallyl disulfide in rat and man’, Xenobiotica 2003, 33, 1185–1199.
- 185 C. J. Decker, D. R. Doerge, ‘Covalent binding of 14C- and 35S-labeled thiocarbamides in rat hepatic microsomes’, Biochem. Pharmacol. 1992, 43, 881–888.
- 186 M. C. Dyroff, R. A. Neal, ‘Studies of the mechanism of metabolism of thioacetamide S-oxide by rat liver microsomes’, Mol. Pharmacol. 1983, 23, 219–227.
- 187 T. A. Vannelli, A. Dykman, P. R. Ortiz de Montellano, ‘The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase’, J. Biol. Chem. 2002, 277, 12824–12829.
- 188 J. Halpert, D. Hammond, R. A. Neal, ‘Inactivation of purified rat liver cytochrome P450 during the metabolism of parathion (diethyl p-nitrophenyl phosphorothionate)’, J. Biol. Chem. 1980, 255, 1080–1089.
- 189 N. P. E. Vermeulen, J. G. M. Bessems, R. van de Straat, ‘Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism-based prevention’, Drug Metab. Rev. 1992, 24, 367–407.
- 190 C. J. Patten, P. E. Thomas, R. L. Guy, M. Lee, F. J. Gonzalez, F. P. Guengerich, C. S. Yang, ‘Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics’, Chem. Res. Toxicol. 1993, 6, 511–518.
- 191 S. S. T Lee, J. T. M: Buters, T. Pineau, P. Fernandez Alguero, F. J. Gonzalez, ‘Role of CYP2E1 in the hepatotoxicity of acetaminophen’, J. Biol. Chem. 1996, 271, 12063–12067.
- 192 J. G. M. Bessems, M. J. de Groot, E. J. Baede, J. M. te Koppele, N. P. E. Vermeulen, ‘ Hydrogen atom abstraction of 3,5-disubstituted analogues of paracetamol by horseradish peroxidase and cytochrome P450’, Xenobiotica 1998, 28, 855–875.
- 193 D. C. Thompson, J. A. Thompson, M. Sugumaran, P. Moldéus, ‘Biological and toxicological consequences of quinone methide formation’, Chem.-Biol. Interact. 1992, 86, 129–162.
- 194 J. A. Thompson, A. M. Malkinson, M. D. Wand, S. L. Mastovich, E. W. Mead, K. M. Schullek, W. G. Laudenschlager, ‘Oxidative metabolism of butylated hydroxytoluene by hepatic and pulmonary microsomes from rats and mice’, Drug Metab. Dispos. 1987, 15, 833–840.
- 195 A. Kamel, J. Davis, M. J. Potchoiba, C. Prakash, ‘Metabolism, pharmacokinetic and excretion of a potent tachykinin NK1 receptor antagonist (CP-122,721) in rat: Characterization of a novel oxidative pathway’, Xenobiotica 2006, 36, 235–258.
- 196 M. R. Anari, S. Khan, S. D. Jatoe, P. J. O'Brien, ‘Cytochrome P450-dependent xenobiotic activation by physiological hydroperoxides in intact hepatocytes’, Eur. J. Drug Metab. Pharmacokinet. 1997, 22, 305–310.
- 197 M. Y. Wang, J. G. Liehr, ‘Identification of fatty acid hydroperoxide cofactors in the cytochrome P450-mediated oxidation of estrogens to quinone metabolites’, J. Biol. Chem. 1994, 269, 284– 291.
- 198 M. R. Anari, P. D. Josephy, T. Henry, P. J. O'Brien, ‘ Hydrogen peroxide supports human and rat cytochrome P450 1A2-catalyzed 2-amino-3-methylimidazo[4,5-f]quinoline bioactivation to mutagenic metabolites: Significance of cytochrome P450 peroxidase’, Chem. Res. Toxicol. 1997, 10, 582–588.
- 199 R. W. Chadwick, S. E. George, L. D. Claxton, ‘Role of the gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens’, Drug Metab. Rev. 1992, 24, 425–492.
- 200 D. R. Koop, ‘Oxidative and reductive metabolism by cytochrome P450 2E1’, FASEB J. 1992, 6, 724–730.
- 201 A. R. Goeptar, H. Scheerens, N. P. E. Vermeulen, ‘Oxygen and xenobiotic reductase activities by cytochrome P450’, Crit. Rev. Toxicol. 1995, 25, 25–65.
- 202 D. Perrissoud, B. Testa, ‘Inhibiting or potentiating effects of flavonoids on carbon tetrachloride-induced toxicity in isolated rat hepatocytes’, Arzneim.-Forsch. (Drug Res.) 1986, 36, 1249– 1253.
- 203 W. R. Jondorf, ‘Drug metabolism and drug toxicity: Some evolutionary considerations’, in ‘Concepts in Drug Metabolism, Part B’, Eds. P. Jenner, B. Testa, Dekker, New York, 1981, p. 307–376.
- 204 W. R. Kelce, C. R. Stone, S. C. Laws, L. E. Gray, J. A. Kemppainen, E. M. Wilson, ‘Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist’, Nature 1995, 375, 581–585.
- 205 M. Manno, S. Cazzaro, M. Rezzadore, ‘The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane’, Arch. Toxicol. 1991, 65, 191–198.
- 206 D. K. Spracklin, K. E. Thummel, E. D. Kharasch, ‘ Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4’, Drug Metab. Dispos. 1991, 24, 976–983.
- 207 A. K. Fröhlich, U. Girreser, B. Clement, ‘Metabolism of benzamidoxime (N-hydroxyamidine) in human hepatocytes and role of UDP-glucuronosyltransferases’, Xenobiotica 2005, 35, 17–25.
- 208 S. Heberling, U. Girreser, S. Wolf, B. Clement, ‘Oxygen-insensitive enzymatic reduction of oximes to imines’, Biochem. Pharmacol. 2006, 71, 354–365.
- 209 B. Clement, ‘Reduction of N-hydroxylated compounds: amidoximes (N-hydroxyamidines) as prodrugs of amidines’, Drug Metab. Rev. 2002, 34, 565–579.
- 210 S. Zbaida, C. F. Brewer, W. G. Levine, ‘Substrates for microsomal azoreductase. Hammett substituent effects, NMR studies and response to inhibitors’, Drug Metab. Dispos. 1992, 20, 902–908.
- 211 W. G. Levine, A. Stoddart, S. Zbaida, ‘Multiple mechanisms in hepatic microsomal azoreduction’, Xenobiotica 1992, 22, 1111–1120.
- 212 S. Zbaida, ‘The mechanism of microsomal azoreduction: predictions based on electronic aspects of structure–activity relationships’, Drug Metab. Rev. 1995, 27, 497–516.
- 213 E. M. Cretton, J. P. Sommadossi, ‘Reduction of 3′-azido-2′,3′-dideoxynucleosides to their 3′-amino metabolite is mediated by cytochrome P-450 and NADPH-cytochrome P-450 reductase in rat liver microsomes’, Drug Metab. Dispos. 1993, 21, 946–950.
- 214 X. R. Pan-Zhou, E. Cretton-Scott, X. J. Zhou, M. X. Yang, J. M. Lasker, J. P. Sommadossi, ‘Role of human liver P450s and cytochrome b5 in the reductive metabolism of 3′-azido-3′-deoxythymidine (AZT) to 3′-amino-3′-deoxythymidine’, Biochem. Pharmacol. 1998, 55, 757–766.
- 215 J. E. Biaglow, M. E. Varnes, L. Roizen-Towle, E. P. Clark, E. R. Epp, M. B. Astor, E. J. Hall, ‘Biochemistry of reduction of nitro heterocycles’, Biochem. Pharmacol. 1986, 35, 77–90.
- 216 V. Purohit, A. K. Basu, ‘Mutagenicity of nitroaromatic compounds’, Chem. Res. Toxicol. 2000, 13, 673–692.
- 217 J. Butler, B. M. Hoey, ‘The one-electron reduction potential of several substrates can be related to their reduction rates by cytochrome P-450 reductase’, Biochim. Biophys. Acta 1993, 1161, 73– 78.
- 218 J. J. R. Hermans, H. H. W. Thijssen, ‘Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4′-nitrowarfarin (acenocoumarol)’, Xenobiotica 1991, 21, 295–307.
- 219 K. Ask, N. Décologne, C. Ginies, M. Låg, J. L. Boucher, J. A. Holme, H. Pelczar, P. Camus, ‘Metabolism of nilutamide in rat lung’, Biochem. Pharmacol. 2006, 71, 377–395.
- 220 W. N. Wu, L. A. McKown, S. Liao, ‘Metabolism of the analgesic drug ULTRAM® (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites’, Xenobiotica 2002, 32, 411–425.
- 221 W. N. Wu, L. A. McKown, E. E. Codd, R. B. Raffa, ‘Metabolism of two analgesic agents, tramadol N-oxide and tramadol, in specific pathogen-free and axenic mice’, Xenobiotica 2006, 36, 551–565.
- 222 S. M. Raleigh, E. Wanogho, M. D. Burke, L. H. Patterson, ‘Rat cytochromes P450 (CYP) specifically contribute to the reductive bioactivation of AQ4N, an alkylaminoanthraquinone-di-N-oxide anticancer prodrug’, Xenobiotica 1999, 29, 1115–1122.
- 223 P. M. Loadman, D. J. Swaine, M. C. Bibby, K. J. Welham, L. H. Patterson, ‘A preclinical pharmacokinetic study of the bioreductive drug AQ4N’, Drug Metab. Dispos. 2001, 29, 422–426.
- 224 D. Lang, A. S. Kalgutkar, ‘Non-P450 mediated oxidative metabolism of xenobiotics’, In ‘Drug Metabolizing Enzymes. Cytochrome P450 and Other Enzymes in Drug Discovery and Development’, J. Lee, R. S. Obach, M. B. Fisher, Eds. Dekker, New York, 2003, p. 483–540.
- 225 M. B. H. Youdim, J. P. M. Finberg, ‘New directions in monoamine oxidase A and B selective inhibitors and substrates’, Biochem. Pharmacol. 1991, 41, 155–162.
- 226 G. Maret, B. Testa, P. Jenner, N. El Tayar, P. A. Carrupt, ‘The MPTP story: MAO activates tetrahydropyridine derivatives to toxins causing parkinsonism’, Drug Metab. Rev. 1990, 22, 291–332.
- 227 T. J. Mantle, K. F. Tipton (Eds.), ‘Amine oxidases: structure, function and expression’, Biochem. Trans. 1991, 19, 199–233.
- 228 M. Strolin Benedetti, P. Dostert, ‘Contribution of amine oxidases to the metabolism of xenobiotics’, Drug Metab. Rev. 1994, 26, 507–535.
- 229 M. Strolin Benedetti, K. F. Tipton, ‘Monoamine oxidases and related amine oxidases as phase I enzymes in the metabolism of xenobiotics’, J. Neural Transm. 1998, 52(Suppl.), 149–171.
- 230 M. Strolin Benedetti, ‘Biotransformation of xenobiotics by amine oxidases’, Fundam. Clin. Pharmacol. 2001, 15, 75–84.
- 231 P. J. O'Brien, A. G. Siraki, N. Shangari, ‘Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health’, Crit. Rev. Toxicol. 2005, 35, 609–662.
- 232 B. Gong, P. J. Boor, ‘The role of amine oxidases in xenobiotic metabolism’, Expert Opin. Drug Metab. Toxicol. 2006, 2, 559–571.
- 233 J. P. Klinman, D. Mu, ‘Quinoenzymes in biology’, Annu. Rev. Biochem. 1994, 63, 299–344.
- 234 R. Medda, A. Padiglia, J. Z. Pedersen, G. Rotilio, A. Finazzi Agrò, G. Floris, ‘The reaction mechanism of copper amine oxidase: detection of intermediates by the use of substrates and inhibitors’, Biochemistry 1995, 34, 16375–16381.
- 235 A. High, T. Prior, R. A. Bell, P. K. Rangachari, ‘Probing the ‘active site’ of diamine oxidase : structure–activity relations for histamine potentiation by O-alkylhydroxylamines on colonic epithelium', J. Pharmacol. Exp. Ther. 1999, 288, 490–501.
- 236 E. Y. Wang, H. Gao, L. Salter-Cid, J. Zhang, L. Huang, E. M. Podar, A. Miller, J. Zhao, A. O'Rourke, M. D. Linnik, ‘Design, synthesis, and biological evaluation of semicarbazide-sensitive amine oxidase (SSAO) inhibitors with anti-inflammatory activity’, J. Med. Chem. 2006, 49, 2166–2173.
- 237 R. B. Silverman, ‘Radical ideas about monoamine oxidase’, Acc. Chem. Res. 1995, 28, 335–342.
- 238 W. Weyler, Y. P. P. Hsu, X. O. Breakefield, ‘Biochemistry and genetics of monoamine oxidase’, Pharmacol. Ther. 1990, 47, 391–417.
- 239 A. M. Yu, C. P. Granvil, R. L. Haining, K. W. Krausz, J. Corchero, A. Küpfer, J. R. Idle, F. J. Gonzalez, ‘The relative contribution of monoamine oxidase and cytochrome P450 isozymes to the metabolic deamination of the trace amine tryptamine’, J. Pharmacol. Exp. Ther. 2003, 304, 539–546.
- 240 N. Castagnoli Jr., J. M. Rimoldi, J. Bloomquist, K. P. Castagnoli, ‘Potential metabolic bioactivation pathways involving cyclic tertiary amines and azaarenes’, Chem. Res. Toxicol. 1997, 10, 924–940.
- 241 A. S. Kalgutkar, D. K. Dalvie, N. Castagnoli Jr., T. J. Taylor, ‘Interactions of nitrogen-containing xenobiotics with MAO-A and MAO-B: SAR studies on MAO substrates and inhibitors’, Chem. Res. Toxicol. 2001, 14, 1139–1162.
- 242 N. Castagnoli Jr., K. P. Castagnoli, G. Magnin, S. Kuttab, J. Shang, ‘Studies on the oxidation of 1,4-disubstituted-1,2,3,6-tetrahydropyridines’, Drug Metab. Rev. 2002, 34, 533–547.
- 243 B. Rochat, M. Kossel, G. Boss, B. Testa, M. Gillet, P. Baumann, ‘Stereoselective biotransformation of the SSRI citalopram and its demethylated metabolites by monoamine oxidases in human liver’, Biochem. Pharmacol. 1998, 56, 15–23.
- 244 M. Kossel, C. Gnerre, P. Voirol, M. Amey, B. Rochat, C. Bouras, B. Testa, P. Baumann, ‘In vitro biotransformation of the selective serotonin reuptake inhibitor citalopram, its enantiomers and demethylated metabolites by monoamine oxidase in rat and human brain preparations’, Mol. Psychiat. 2002, 7, 181–188.
- 245 M. Salva, J. M. Jansat, A. Martinez-Tobed, J. M. Palacios, ‘Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan’, Drug Metab. Dispos. 2003, 31, 404–411.
- 246 P. H. Yu, B. A. Davis, A. A. Boulton, ‘Aliphatic propargylamines: potent, selective, irreversible monoamine oxidase B inhibitors’, J. Med. Chem. 1992, 35, 3705–3713.
- 247 P. H. Yu, B. A. Davis, ‘Stereospecific deamination of benzylamine catalyzed by different amine oxidases’, Int. J. Biochem. 1988, 20, 1197–1201.
- 248 G. Alton, T. H. Taher, R. J. Beever, M. M. Palcic, ‘Stereochemistry of benzylamine oxidation by copper amine oxidases’, Arch. Biochem. Biophys. 1995, 316, 353–361.
- 249 F. Yraola, S. Garcia-Vicente, J. Fernandez-Reccio, F. Albericio, A. Zorzano, L. Marti, M. Royo, ‘New efficient substrates for SSAO/VAP-1 enzyme: analysis by SARs and computational docking’, J. Med. Chem. 2006, 49, 6197–6208.
- 250 A. P. Beresford, P. V. Macrae, D. A. Stopher, ‘Metabolism of amlodipine in the rat and dog: a species difference’, Xenobiotica 1988, 18, 169–182.
- 251 R. Hille, ‘Molybdenum-containing hydroxylases’, Arch. Biochem. Biophys. 2005, 433, 107–116.
- 252 E. Garattini, R. Mendel, M. J. Romao, R. Wright, M. Terao, ‘Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology’, Biochem. J. 2003, 372, 15–32.
- 253 K. Okamoto, K. Matsumoto, R. Hille, B. T. Eger, E. F. Pai, T. Nishino, ‘The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition’, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7931–7936.
- 254 M. Terao, M. Kurosaki, M. M. Barzago, E. Varasano, A. Boldetti, A. Bastone, M. Fratelli, E. Garattini, ‘Avian and canine aldehyde oxidases: Novel insights into the biology and evolution of molybdo-flavoenzymes’, J. Biol. Chem. 2006, 281, 19748–19761.
- 255 R. Harrison, ‘Physiological roles of xanthine oxidoreductase’, Drug Metab. Rev. 2004, 36, 363–375.
- 256 R. Hille, ‘The reaction mechanism of oxomolybdenum enzymes’, Biochim. Biophys. Acta 1994, 1184, 143–169.
- 257 S. Kitamura, K. Sugihara, S. Ohta, ‘Drug-metabolizing ability of molybdenum hydroxylases’, Drug Metab. Pharmacokinet. 2006, 21, 83–96.
- 258 F. Lacy, D. A. Gough, G. W. Schmid-Schönbein, ‘Role of xanthine oxidase in hydrogen peroxide production’, Free Radical Biol. Med. 1998, 25, 720–727.
- 259 C. Galbusera, P. Orth, D. Fedida, T. Spector, ‘Superoxide radical production by allopurinol and xanthine oxidase’, Biochem. Pharmacol. 2006, 71, 1747–1752.
- 260 C. Beedham, ‘Molybdenum hydroxylases as drug-metabolizing enzymes’, Drug Metab. Rev. 1985, 16, 119–156.
- 261 C. Beedham, ‘The role of non-P450 enzymes in drug oxidation’, Pharm. World Sci. 1997, 19, 255–263.
- 262 G. Rastelli, L. Costantino, A. Albasini, ‘A model of the interaction of substrates and inhibitors with xanthine oxidase’, J. Am. Chem. Soc. 1997, 119, 3007–3016.
- 263 D. O'Connor, P. Jones, M. S. Chambers, R. Maxey, H. J. Szekeres, N. Szeto, P. Scott-Stevens, A. M. Macleod, M. Braun, B. Cato, ‘Aldehyde oxidase and its contribution to the metabolism of a structurally novel, functionally selective GABAA α5-subtype inverse agonist’, Xenobiotica 2006, 36, 315–330.
- 264 K. Sugihara, Y. Tayama, K. Shimomiya, D. Yoshimoto, S. Ohta, S. Kitamura, ‘Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and interspecies variation of the enzyme activity in rats’, Drug Metab. Dispos. 2006, 34, 208–212.
- 265 Y. Moriwaki, T. Yamamoto, Y. Nasako, S. Takahashi, M. Suda, K. Hiroishi, T. Hada, K Higashino, ‘In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase’, Biochem. Pharmacol. 1993, 46, 975–981.
- 266 G. I. Panoutsopoulos, D. Kouretas, C. Beedham, ‘Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes’, Chem. Res. Toxicol. 2004, 17, 1368–1376.
- 267 D. C. Lewis, T. Shibamoto, ‘Relative metabolism of quinones to semiquinone radicals in xanthine oxidase system’, J. Appl. Toxicol. 1989, 9, 291–295.
- 268 D. Roy, B. Kalyanaraman, J. G. Liehr, ‘Xanthine oxidase-catalyzed reduction of estrogen quinones to semiquinones and hydroquinones’, Biochem. Pharmacol. 1991, 42, 1627–1631.
- 269 O. Ueda, S. Kitamura, K. Ohashi, K. Sugihara, S. Ohta, ‘Xanthine oxidase-catalyzed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin’, Drug Metab. Dispos. 2003, 31, 367– 372.
- 270 R. I. Sanchez, S. Mesia-Vela, F. C. Kauffman, ‘Challenges of cancer drug design: a drug metabolism perspective’, Curr. Cancer Drug Targets 2001, 1, 1–32.
- 271 P. Reigan, P. N. Edwards, A. Gbaj, C. Cole, S. T. Barry, K. M. Page, S. E. Ashton, R. W. A. Luke, K. T. Douglas, I. J. Stratford, M. Jaffar, R. A. Bryce, S. Freeman, ‘Aminoimidazolylmethyluracil analogues as potent inhibitors of thymidine phosphorylase and their bireductive nitroimidazolyl prodrugs’, J. Med. Chem. 2005, 48, 392–402.
- 272 C. Beedham, J. Miceli, R. S. Obach, ‘Ziprasidone metabolism, aldehyde oxidase, and clinical implications’, J. Clin. Psychopharmacol. 2003, 23, 229–232.
- 273 P. J. O'Brien, ‘Peroxidases’, Chem.-Biol. Interact. 2000, 129, 113–139.
- 274 S. Tafazoli, P. J. O'Brien, ‘Peroxidases: a role in the metabolism and side effects of drugs’, Drug Discov. Today 2005, 10, 617–625.
- 275 H. B. Dunford, ‘One-electron oxidations by peroxidases’, Xenobiotica 1995, 25, 725–733.
- 276 J. P. Uetrecht, ‘The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions’, Drug Metab. Rev. 1992, 24, 299–366.
- 277 J. R. Vane, Y. S. Bakhle, R. M. Botting, ‘Cyclooxygenases 1 and 2’, Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120.
- 278 J. R. Kiefer, J. L. Pawlitz, K. T. Moreland, R. A. Stegeman, W. F. Hood, J. K. Glerse, A. M. Stevens, D. C. Goodwin, S. W. Rowlinson, L. J. Marnett, W. C. Stallings, R. G. Kurumball, ‘Structural insights into the stereochemistry of the cyclooxygenase reaction’, Nature 2000, 405, 97–101.
- 279 T. E. Eling, J. F. Curtis, ‘Xenobiotic metabolism by prostaglandin H synthase’, Pharmacol. Ther. 1992, 53, 261–273.
- 280 T. E. Eling, D. C. Thompson, G. L. Foureman, J. F. Curtis, M. F. Hughes, ‘Prostaglandin H synthase and xenobiotic oxidation’, Annu. Rev. Pharmacol. Toxicol. 1990, 30, 1–45.
- 281 R. Goldman, G. H. Claycamp, M. A. Sweetland, A. V. Sedlov, V. A. Tyurin, E. R. Kisin, Y. Y. Tyurnina, V. B. Ritov, S. L. Wenger, S. G. Grant, V. E. Kagan, ‘Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells’, Free Radical Biol. Med. 1999, 27, 1050–1063.
- 282 D. A. Eastmond, M. T. Smith, L. O. Ruzo, D. Ross, ‘Metabolic activation of phenol by human myeloperoxidase and horseradish peroxidase’, Mol. Pharmacol. 1986, 30, 674–679.
- 283 J. Dai, A. L. Sloat, M. W. Wright, R. A. Manderville, ‘Role of phenoxyl radicals in DNA adduction by chlorophenol xenobiotics following peroxidase activation’, Chem. Res. Toxicol. 2005, 18, 771–779.
- 284 L. G. Ganousis, D. Goon, T. Zyglewska, K. K. Wu, D. Ross, ‘Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites’, Mol. Pharmacol. 1992, 42, 1118–1125
- 285 R. Snyder, C. C. Hedli, ‘An overview of benzene metabolism’, Environ. Health Perspect. 1996, 104, 1165–1171.
- 286 R. V. Bhat, V. V. Subrahmanyam, A. Sadler, D. Ross, ‘Bioactivation of catechol in rat and human bone marrow cells’, Toxicol. Appl. Pharmacol. 1988, 94, 297–304
- 287 R. J. Boatman, J. C. English, L. G. Perry, L. A. Fiorica, ‘Covalent protein adducts of hydroquinone in tissues from rats: identification of quantification of sulfhydryl-bound forms’, Chem. Res. Toxicol. 2000, 13, 853–860.
- 288 A. S. Kalgutkar, D. K. Dalvie, J. P. O'Donnell, T. J. Taylor, D. C. Sahakian, ‘On the diversity of oxidative bioactivation reactions on nitrogen-containing xenobiotics’, Curr. Drug Metab. 2002, 3, 379–424.
- 289 J. L. Maggs, D. Williams, M. Pirmohamed, B. K. Park, ‘The metabolic formation of reactive intermediates from clozapine, a drug associated with agranulocytosis in man’, J. Pharmacol. Exp. Ther. 1995, 275, 1463–1475.
- 290 K. S. Smith, P. L. Smith, T. N. Heady, J. M. Trugman, W. D. Harman, T. L. Macdonald, ‘In vitro metabolism of tolcapone to reactive intermediates: relevance to tolcapone liver toxicity’, Chem. Res. Toxicol. 2003, 16, 123–128.
- 291 L. J. Marnett, P. Wlodawer, B. Samuelsson, ‘Co-oxygenation of organic substrates by the prostaglandin synthetase of sheep vesicular gland’, J. Biol. Chem. 1975, 250, 8510–8517.
- 292 P. J. Harvison, R. W. Egan, P. H. Gale, G. D. Christian, B. S. Hill, S. D. Nelson, ‘Acetaminophen and analogs as cosubstrates and inhibitors of prostaglandin H synthase’, Chem.-Biol. Interact. 1988, 64, 251–266.
- 293 J. F. Curtis, K. Tomer, S. McGown, T. E. Eling, ‘Prostaglandin H synthase-catalyzed ring oxygenation of 2-naphthylamine: evidence for two distinct oxidation pathways’, Chem. Res. Toxicol. 1995, 8, 875–883.
- 294 L. M. Winn, P. G. Wells, ‘Evidence for embryonic prostaglandin H synthase-catalyzed bioactivation and reactive oxygen species-mediated oxidation of cellular macromolecules in phenytoin and benzo[a]pyrene teratogenesis’, Free Radical Biol. Med. 1997, 22, 607–621.
- 295 T. Patman, M. J. Wiley, P. G. Wells, ‘Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity’, Nature Med. 1999, 5, 582–585.
- 296 M. J. Cox Rosemond, J. S. Walsh, ‘ Human carbonyl reduction pathways and a strategy for their study in vitro’, Drug Metab. Rev. 2004, 36, 335–361.
- 297 U. C. T. Oppermann, E. Maser, ‘Molecular and structural aspects of xenobiotic carbonyl metabolizing enzymes. Role of reductases and dehydrogenases in xenobiotic phase I reactions’, Toxicology 2000, 144, 71–81.
- 298 E. Maser, ‘Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases’, Biochem. Pharmacol. 1995, 49, 421–440.
- 299 G. Duester, J. Farrés, M. R. Felder, R. S. Holmes, J. O. Höög, X. Parés, B. V. Plapp, S. J. Yin, H. Jörnvall, ‘Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family’, Biochem. Pharmacol. 1999, 58, 389–395.
- 300 G. Duester, ‘Families of retinoid dehydrogenases regulating vitamin A function’, Eur. J. Biochem. 2000, 267, 4315–4324.
- 301 H. Jörnvall, E. Nordling, B. Persson, ‘Multiplicity of eukaryotic ADH and other forms’, Chem.-Biol. Interact. 2003, 143–144, 255–261.
- 302 B. L. Vallee, D. S. Auld, ‘Zinc coordination, function and structure of zinc enzymes and other proteins’, Biochemistry 1990, 29, 5647–5659.
- 303 F. L. Gervasio, V. Schettino, S. Mangani, M. Krack, P. Carloni, M. Parrinello, ‘Influence of outer-shell metal ligands on the structural and electronic properties of horse liver alcohol dehydrogenase zinc active site’, J. Phys. Chem. 2003, 107, 6886–6892.
- 304 M. Frezza, C. di Padova, G. Pozzato, M. Terpin, E. Baraona, C. S. Lieber, ‘ High blood alcohol levels in women’, N. Engl. J. Med. 1990, 322, 95–99.
- 305 M. Radel, D. Goldman, ‘Pharmacogenetics of alcohol response and alcoholism: the interplay of genes and environmental factors in thresholds for alcoholism’, Drug Metab. Dispos. 2001, 29, 489–494.
- 306 V. Vasiliou, A. Pappa, T. Estey, ‘Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism’, Drug Metab. Rev. 2004, 36, 279–299.
- 307 V. Vasiliou, A. Bairoch, K. F. Tipton, D. W. Nebert, ‘Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphism, and recommended nomenclature based on divergent evolution and chromosomal mapping’, Pharmacogenetics 1999, 9, 421–434; www.aldh.org.
- 308 V. Vasiliou, A. Pappa, ‘Polymorphisms of human aldehyde dehydrogenases’, Pharmacology 2000, 61, 192–198.
- 309 J. S. Rodriguez-Zavala, H. Weiner, ‘Structural aspects of aldehyde dehydrogenase that influence dimer-tetramer formation’, Biochemistry 2002, 41, 8229–8237.
- 310 J. M. Jez, T. G. Flynn, T. M. Penning, ‘A new nomenclature for the aldo-keto reductase superfamily’, Biochem. Pharmacol. 1997, 54, 639–647; D. Hyndman, D. R. Bauman, V. V. Heredia, T. M. Penning, ‘The aldo-keto reductase superfamily homepage’, Chem.-Biol. Interact. 2003, 143–144, 621–631; www.med.upenn.edu/akr/.
- 311 T. M. Penning, Y. Jin, S. Steckelbroeck, T. Lanisnik Rizner, M. Lewis, ‘Structure-function of human 3α-hydroxy steroid dehydrogenases: genes and proteins’, Mol. Cell. Endocrinol. 2004, 215, 63–72.
- 312 H. K. Lin, C. F. Hung, M. Moore, T. M. Penning, ‘Genomic structure of rat 3α-hydroxysteroid/dihydrodiol dehydrogenase (3α-HSD/DD, AKR1C9)’, J. Steroid Biochem. Mol. Biol. 1999, 71, 29–39.
- 313 T. Ozeki, Y. Takahashi, T. Kume, K. Nakayama, T. Yokoi, K. I. Nunoya, A. Hara, T. Kamataki, ‘Co-operative regulation of the transcription of human dihydrodiol dehydrogenase DD4/aldo-keto reductase AKR1C4 gene by hepatocyte nuclear factor (HNF)-4α/γ and HNF-1α’, Biochem. J. 2001, 355, 537–544.
- 314 F. P. Guengerich, H. Cai, M. McMahon, J. D. Hayesm T. R. Sutter, J. D. Groopman, Z. Deng, T. M. Harris, ‘Reduction of aflatoxin B1 dialdehyde by rat and human aldo-keto reductases’, Chem. Res. Toxicol. 2001, 14, 727–737.
- 315 G. L. Forrest, B. Gonzalez, ‘Carbonyl reductases’, Chem.-Biol. Interact. 2000, 129, 21–40.
- 316 A. Blum, A. Raum, H. J. Martin, E. Maser, ‘ Human 11β-hydroxysteroid dehydrogenase 1/carbonyl reductase: additional domains for membrane attachment’, Chem.-Biol. Interact. 2001, 130–132, 749–759.
- 317 M. E. Baker, ‘Rat 3α-hydroxysteroid dehydrogenase: to oxidize or reduce, that is the question’, Endocrinology 2006, 147, 1589–1590.
- 318 S. S. Lakhman, D. Ghosh, J. B. Blanco, ‘Functional significance of a natural allelic variant of human carbonyl reductase 3 (CBR3)’, Drug Metab. Dispos. 2005, 33, 254–257.
- 319 D. Ross, ‘Quinone reductases multitasking in the metabolic world’, Drug Metab. Rev. 2004, 36, 639–654.
- 320 C. E. Foster, M. A. Bianchet, P. Talalay, M. Faig, L. M. Amzel, ‘Structures of mammalian cytosolic quinone reductases’, Free Radical Biol. Med. 2000, 29, 241–245.
- 321 S. Chen, K. Wu, R. Knox, ‘Structure–function studies of DT-diaphorase (NQO1) and NRH : quinone oxidoreductase (NQO2)’, Free Radical Biol. Med. 2000, 29, 276–284.
- 322 D. J. Long II, A. K. Jaiswal, ‘NRH:quinone oxidoreductase 2 (NQO2)’, Chem.-Biol. Interact. 2000, 129, 99–112.
- 323 F. Vella, G. Ferry, P. Delagrange, J. A. Boutin, ‘NRH : quinone reductase 2: an enzyme of surprises and mysteries’, Biochem. Pharmacol. 2005, 71, 1–12.
- 324 L. P. Olson, J. Luo, Ö. Almarsson, T. C. Bruice, ‘Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase’, Biochemistry 1996, 35, 9782–9791.
- 325 S. Ramaswamy, H. Eklund, B. V. Plapp, ‘Structures of horse live alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols’, Biochemistry 1994, 33, 5230–5237.
- 326 P. K. Agarwal, S. P. Webb, S. Hammes-Schiffer, ‘Computational studies on the mechanism for proton and hydride transfer in liver alcohol dehydrogenase’, J. Am. Chem. Soc. 2000, 122, 4803– 4812.
- 327 L. A. LeBrun, D. H. Park, S. Ramaswamy, B. V. Plapp, ‘Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase’, Biochemistry 2004, 43, 3014–3026.
- 328 A. A. Klyosov, ‘Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes’, Biochemistry 1996, 35, 4457–4467.
- 329 A. A. Klyosov, L. G. Rashkovetsky, M. K. Tahir, W. M. Keung, ‘Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism’, Biochemistry 1996, 35, 4445–4456.
- 330 F. R. Fontaine, R. A. Dunlop, D. R. Petersen, P. C. Burcham, ‘Oxidative bioactivation of crotyl alcohol to the toxic endogenous aldehyde crotonaldehyde: association of protein carbonylation with toxicity in mouse hepatocytes’, Chem. Res. Toxicol. 2002, 15, 1051–1058.
- 331 R. Lindahl, ‘Aldehyde dehydrogenases and their role in carcinogenesis’, Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335.
- 332 J. E. Patanella, J. S. Walsh, ‘Oxidation of carbovir, a carbocyclic nucleoside, by rat liver cytosolic enzymes’, Drug Metab. Dispos. 1992, 20, 912–919.
- 333 W. Lenk, D. Löhr, J. Sonnenbichler, ‘Pharmacokinetics and biotransformation of diethylene glycol and ethylene glycol in the rat’, Xenobiotica 1989, 19, 961–979.
- 334 E. D. Booth, O. Dofferhoff, P. J. Boogaard, W. P. Watson, ‘Comparison of the metabolism of ethylene glycol and glycolic acid in vitro by precision-cut tissue slices from female rat, rabbit and human liver’, Xenobiotica 2004, 34, 31–48.
- 335 A. K. Sohlenius-Sternbeck, H. von Euler Chelpin, A. Orzechowski, M. M. Halldin, ‘Metabolism of sameridine to monocarboxylated products by hepatocytes isolated from the male rat’, Drug Metab. Dispos. 2000, 28, 695–700.
- 336 J. J. R. Hermans, H. H. W. Thijssen, ‘Stereoselective acetonyl side chain reduction of warfarin and analogs’, Drug Metab. Dispos. 1992, 20, 268–274.
- 337 S. J. Porter, A. A. Somogyi, J. M. White, ‘Kinetics and inhibition of the formation of 6β-naltrexol from naltrexone in human liver cytosol’, Br. J. Clin. Pharmacol. 2000, 50, 465–471.
- 338 U. Breyer-Pfaff, K. Nill, ‘Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol’, J. Pharm. Pharmacol. 2004, 56, 1601–1606.
- 339 S. Yamano, F. Ichinose, T. Todaka, S. Toki, ‘Purification and characterization of two major forms of naloxone reductase from rabbit liver cytosol, new members of aldo-keto reductase superfamily’, Biol. Pharm. Bull. 1999, 22, 1038–1046.
- 340 U. Breyer-Pfaff, H. J. Martin, M. Ernst, E. Maser, ‘Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat liver and by enzymes isolated from human liver’, Drug Metab. Dispos. 2004, 32, 915–922.
- 341 H. J. Martin, U. Breyer-Pfaff, V. Wsol, S. Venz, S. Block, E. Maser, ‘Purification and characterization of AKR1B10 from human liver: role in carbonyl reduction of xenobiotics’, Drug Metab. Dispos. 2006, 34, 464–470; J. Dow, C. Berg, ‘Stereoselectivity of the carbonyl reduction of dolasetron in rats, dogs and humans’, Chirality 1995, 7, 342–348.
- 342 B. Testa, ‘Some chemical and stereochemical aspects of diethylpropion metabolism in man’, Acta Pharm. Suec. 1973, 10, 441–454; M. Reist, L. H. Christiansen, P. Christoffersen, P. A. Carrupt, B. Testa, ‘Low configurational stability of amfepramone and cathinone: Mechanism and kinetics of chiral inversion’, Chirality 1995, 7, 469–473.
- 343 T. M. Penning, ‘Dihydrodiol dehydrogenase and its role in polycyclic aromatic hydrocarbon metabolism’, Chem.-Biol. Interact. 1993, 89, 1–34.
- 344 T. M. Penning, M. E. Burczynski, C. F. Hung, K. D. McCoull, N. T. Palackal, L. S. Tsuruda, ‘Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones’, Chem. Res. Toxicol. 1999, 12, 1–18.
- 345 N. T. Palackal, S. H. Lee, R. G. Harvey, I. A. Blair, T. M. Penning, ‘Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells’, J. Biol. Chem. 2002, 277, 24799–24808.
- 346 N. T. Palackal, M. E. Burczynski, R. G. Harvey, T. M. Penning, ‘The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation’, Biochemistry 2001, 40, 10901–10910.
- 347 T. M. Cho, R. L. Rose, E. Hodgson, ‘In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes’, Drug Metab. Dispos. 2006, 34, 176–183.
- 348 K. Sugiyama, T. C. Lin Wang, J. T. Simpson, L. Rodriguez, P. F. Kador, S. Sato, ‘Aldose reductase catalyzes the oxidation of naphthalene-1,2-dihydrodiol for the formation of ortho-naphthoquinone’, Drug Metab. Dispos. 1999, 27, 60–67.
- 349 W. Xue, D. Warshawsky, ‘Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review’, Toxicol. Appl. Pharmacol. 2005, 206, 73–93.
- 350 T. M. Penning, S. T. Ohnishi, T. Ohnishi, R. G. Harvey, ‘Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbons trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase’, Chem. Res. Toxicol. 1996, 9, 84–92.
- 351 T. J. Monks, R. P. Hanzlik, G. M. Cohen, D. Ross, D. G. Graham, ‘Quinone chemistry and toxicity’, Toxicol. Appl. Pharmacol. 1992, 112, 2–16; J. L. Bolton, M. A. Trush, T. M. Penning, G. Dryherst, T. J. Monks, ‘Role of quinones in toxicology’, Chem. Res. Toxicol. 2000, 13, 135–160.
- 352 K. D. McCoull, D. Rindgen, I. A. Blair, T. M. Penning, ‘Synthesis and characterization of polycyclic aromatic hydrocarbons o-quinone depurinating N7-guanine adducts’, Chem. Res. Toxicol. 1999, 12, 237–246.
- 353 K. Seite, M. Murata, K. Hirakawa, Y. Deyashiki, S. Kawanishi, ‘Oxidative DNA damage induced by benz[a]anthracene dihydrodiols in the presence of dihydrodiol dehydrogenase’, Chem. Res. Toxicol. 2004, 17, 1445–1451.
- 354 J. Jarabak, R. G. Harvey, ‘Studies on three reductases which have polycyclic aromatic hydrocarbon quinones as substrates’, Arch. Biochem. Biophys. 1993, 303, 394–401.
- 355 G. D. Buffinton, K. Öllinger, A. Brunmark, E. Cadenas, ‘DT-Diaphorase-catalyzed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates’, Biochem. J. 1989, 257, 561–571.
- 356 T. J. Monks, S. S. Lau, ‘Toxicology of quinone-thioethers’, Crit. Rev. Toxicol. 1992, 22, 243–270.
- 357 P. Joseph, D. J. Long II, A. J. P. Klein-Szanto, A. K. Jaiswal, ‘Role of NAD(P)H : quinone oxidoreductase I (DT diaphorase) in protection against quinone toxicity’, Biochem. Pharmacol. 2000, 60, 207–214.
- 358 R. Munday, ‘Activation and detoxification of naphthoquinones by NAD(P)H : quinone oxidoreductase’, Methods Enzymol. 2004, 382, 364–380.
- 359 L. J. Chen, E. H. Lebetkin, L. T. Burka, ‘Metabolism and disposition of juglone in male F344 rats’, Xenobiotica 2005, 35, 1019–1034.
- 360 R. J. Riley, P. Workman, ‘DT-Diaphorase and cancer chemotherapy’, Biochem. Pharmacol. 1992, 43, 1657–1669.
- 361 S. M. Bailey, A. D. Lewis, R. J. Knox, L. H. Patterson, G. R. Fisher, P. Workman, ‘Reduction of the indoloquinone anticancer drug EO9 by purified DT-diaphorase: a detailed kinetic study and analysis of metabolites’, Biochem. Pharmacol. 1998, 56, 613–621.
- 362 G. R. Fisher, P. L. Gutierrez, M. A. Oldcorne, L. H. Patterson, ‘NAD(P)H (quinone acceptor) oxidoreductase (DT-diaphorase)-mediated two-electron reduction of anthraquinone-based agents and generation of hydroxyl radicals’, Biochem. Pharmacol. 1992, 43, 575–585.
- 363 M. AbuKhader, J. Heap, C. De Matteis, B. Kellam, S. W. Doughty, N. Minton, M. Paoli, ‘Binding of the anticancer prodrug CB1954 to the activating enzyme NQO2 revealed by the crystal structure of their complex’, J. Med. Chem. 2005, 48, 7714–7719.
- 364 D. Siegel, H. Beall, C. Senekowitsch, M. Kasai, H. Arai, N. W. Gibson, D. Ross, ‘Bioreductive activation of mitomycin C by DT-diaphorase’, Biochemistry 1992, 31, 7879–7885.
- 365 R. M. Phillips, M. A. Naylor, M. Jaffar, S. W. Doughty, S. A. Everett, A. G. Breen, G. A. Choudry, I. J. Stratford, ‘Bioreductive activation of a series of indolquinones by human DT-diaphorase: structure–activity relationships’, J. Med. Chem. 1999, 42, 4071–4080.
- 366 P. M. Loadman, R. M. Phillips, L. E. Lim, M. C. Bibby, ‘Pharmacological properties of a new aziridinylbenzoquinone, RH1 (2,5-aziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone), in mice’, Biochem. Pharmacol. 2000, 59, 831–837.
- 367 R. M. Phillips, M. Jaffar, D. J. Maitland, P. M. Loadman, S. D. Shnyder, G. Steabs, P. A. Cooper, A. Race, A. V. Patterson, I. J. Stratford, ‘Pharmacological and biological evaluation of a series of substituted 1,4-naphthoquinone bioreductive drugs’, Biochem. Pharmacol. 2004, 68, 2107–2116.