Volume 11, Issue 1 pp. 1-5

Neural networks teaching using Evenet-2000

E. J. Gonzalez

Corresponding Author

E. J. Gonzalez

Dept. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38207 S/C de Tenerife, Spain

Dept. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38207 S/C de Tenerife, Spain.Search for more papers by this author
A. Hamilton

A. Hamilton

Dept. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38207 S/C de Tenerife, Spain

Search for more papers by this author
L. Moreno

L. Moreno

Dept. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38207 S/C de Tenerife, Spain

Search for more papers by this author
R. M. Aguilar

R. M. Aguilar

Dept. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38207 S/C de Tenerife, Spain

Search for more papers by this author
R. L. Marichal

R. L. Marichal

Dept. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38207 S/C de Tenerife, Spain

Search for more papers by this author
First published: 12 May 2003
Citations: 6

Abstract

In optimization problems, neural networks have been proved as an efficient method. Because of this, students of Engineering should learn this tool properly in subjects as “Optimal Control” or “Intelligent Control.” In this paper, a planning for neural networks teaching is proposed. As tool, Evenet-2000, a Java-based toolkit which allows to design and train neural networks with arbitrary architecture, is used. © 2003 Wiley Periodicals, Inc. Comput Appl Eng Educ 11: 1–5, 2003; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.10033

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.