To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway
Hogeun Chang
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorMegalamane S. Bootharaju
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorSanghwa Lee
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorJeong Hyun Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Byung Hyo Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul, Republic of Korea
Correspondence
Byung Hyo Kim, Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea.
Email: [email protected]
Taeghwan Hyeon, Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Taeghwan Hyeon
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Correspondence
Byung Hyo Kim, Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea.
Email: [email protected]
Taeghwan Hyeon, Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
Email: [email protected]
Search for more papers by this authorHogeun Chang
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorMegalamane S. Bootharaju
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorSanghwa Lee
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorJeong Hyun Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Byung Hyo Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul, Republic of Korea
Correspondence
Byung Hyo Kim, Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea.
Email: [email protected]
Taeghwan Hyeon, Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Taeghwan Hyeon
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Correspondence
Byung Hyo Kim, Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea.
Email: [email protected]
Taeghwan Hyeon, Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
Email: [email protected]
Search for more papers by this authorFunding information: National Research Foundation, Grant/Award Number: NRF-R1C1C11014339; Institute for Basic Science, Grant/Award Number: IBS-R006-D1
Abstract
Nanoclusters, intermediates in size between atoms and nanoparticles, have been a topic of great interest because of their unique molecular structures and optical properties as compared to those of nanoparticles and bulk counterparts. Recent mechanistic studies have shown that the nanoclusters appear in the initial stages of the nanoparticle growth. The formation of nanoclusters is supported by the nonclassical nucleation theory, revealing that the nanoclusters with extremely large surface areas can be stabilized by the ligands. In this review, we first provide the theoretical background of the classical and nonclassical nucleation mechanisms in the nanoparticle formation, which helps understand the stability of nanoclusters. We then focus on the synthesis and characterization of nanoclusters of noble metals, semiconductors, metal oxides, and their alloys. Furthermore, the potential applications in bioimaging, sensing, optoelectronics, and catalysis, enabled by unique optical and chemical properties of nanoclusters, are discussed.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- 1C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706.
- 2S. G. Kwon, T. Hyeon, Small 2011, 7, 2685.
- 3J. Lee, J. Yang, S. G. Kwon, T. Hyeon, Nat. Rev. Mater. 2016, 1, 16034.
- 4M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc. 2008, 130, 5883.
- 5R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346.
- 6Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526.
- 7V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847.
- 8T. Sugimoto, J. Colloid Interface Sci. 2007, 309, 106.
- 9T. Sugimoto, Adv. Colloid Interface Sci. 1987, 28, 65.
- 10X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
- 11T. Sugimoto, Monodispersed Particles, Elsevier, New York, NY 2001.
- 12D. V. Talapin, A. L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B 2001, 105, 12278.
- 13A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Adv. Funct. Mater. 2002, 12, 653.
- 14D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, H. Weller, J. Am. Chem. Soc. 2002, 124, 5782.
- 15A. S. Kabalnov, E. D. Shchukin, Adv. Colloid Interface Sci. 1992, 38, 69.
- 16M. S. Bootharaju, W. Baek, S. Lee, H. Chang, J. Kim, T. Hyeon, Small 2020, 17, e2002067.
- 17M. A. Watzky, R. G. Finke, J. Am. Chem. Soc. 1997, 119, 10382.
- 18P. Raiteri, J. D. Gale, J. Am. Chem. Soc. 2010, 132, 17623.
- 19H. Zheng, R. K. Smith, Y. W. Jun, C. Kisielowski, U. Dahmen, A. P. Alivisatos, Science 2009, 324, 1309.
- 20B. H. Kim, K. Shin, S. G. Kwon, Y. Jang, H. S. Lee, H. Lee, S. W. Jun, J. Lee, S. Y. Han, Y. H. Yim, D. H. Kim, T. Hyeon, J. Am. Chem. Soc. 2013, 135, 2407.
- 21F. Wang, V. N. Richards, S. P. Shields, W. E. Buhro, Chem. Mater. 2013, 26, 5.
- 22M. Zhu, E. Lanni, N. Garg, M. E. Bier, R. Jin, J. Am. Chem. Soc. 2008, 130, 1138.
- 23Y. Yu, Z. Luo, Y. Yu, J. Y. Lee, J. Xie, ACS Nano 2012, 6, 7920.
- 24Y. Yu, X. Chen, Q. Yao, Y. Yu, N. Yan, J. Xie, Chem. Mater. 2013, 25, 946.
- 25A. Ghosh, J. Hassinen, P. Pulkkinen, H. Tenhu, R. H. Ras, T. Pradeep, Anal. Chem. 2014, 86, 12185.
- 26Y. Negishi, T. Nakazaki, S. Malola, S. Takano, Y. Niihori, W. Kurashige, S. Yamazoe, T. Tsukuda, H. Hakkinen, J. Am. Chem. Soc. 2015, 137, 1206.
- 27P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430.
- 28M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 2008, 130, 3754.
- 29C. Zeng, H. Qian, T. Li, G. Li, N. L. Rosi, B. Yoon, R. N. Barnett, R. L. Whetten, U. Landman, R. Jin, Angew. Chem. Int. Ed. 2012, 51, 13114.
- 30C. Zeng, T. Li, A. Das, N. L. Rosi, R. Jin, J. Am. Chem. Soc. 2013, 135, 10011.
- 31A. Das, T. Li, G. Li, K. Nobusada, C. Zeng, N. L. Rosi, R. Jin, Nanoscale 2014, 6, 6458.
- 32D. Crasto, S. Malola, G. Brosofsky, A. Dass, H. Hakkinen, J. Am. Chem. Soc. 2014, 136, 5000.
- 33A. Dass, S. Theivendran, P. R. Nimmala, C. Kumara, V. R. Jupally, A. Fortunelli, L. Sementa, G. Barcaro, X. Zuo, B. C. Noll, J. Am. Chem. Soc. 2015, 137, 4610.
- 34P. J. Goulet, R. B. Lennox, J. Am. Chem. Soc. 2010, 132, 9582.
- 35T. Chen, Z. Luo, Q. Yao, A. X. Yeo, J. Xie, Chem. Commun. 2016, 52, 9522.
- 36Q. Yao, X. Yuan, V. Fung, Y. Yu, D. T. Leong, D. E. Jiang, J. Xie, Nat. Commun. 2017, 8, 927.
- 37Z. Wu, E. Lanni, W. Chen, M. E. Bier, D. Ly, R. Jin, J. Am. Chem. Soc. 2009, 131, 16672.
- 38T. U. Rao, B. Nataraju, T. Pradeep, J. Am. Chem. Soc. 2010, 132, 16304.
- 39S. Kumar, M. D. Bolan, T. P. Bigioni, J. Am. Chem. Soc. 2010, 132, 13141.
- 40T. U. B. Rao, T. Pradeep, Angew. Chem. Int. Ed. 2010, 49, 3925.
- 41J. Guo, S. Kumar, M. Bolan, A. Desireddy, T. P. Bigioni, W. P. Griffith, Anal. Chem. 2012, 84, 5304.
- 42K. M. Harkness, Y. Tang, A. Dass, J. Pan, N. Kothalawala, V. J. Reddy, D. E. Cliffel, B. Demeler, F. Stellacci, O. M. Bakr, J. A. McLean, Nanoscale 2012, 4, 4269.
- 43F. Bertorelle, R. Hamouda, D. Rayane, M. Broyer, R. Antoine, P. Dugourd, L. Gell, A. Kulesza, R. Mitric, V. Bonacic-Koutecky, Nanoscale 2013, 5, 5637.
- 44A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, T. P. Bigioni, Nature 2013, 501, 399.
- 45H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Hakkinen, N. Zheng, Nat. Commun. 2013, 4, 2422.
- 46H. Yang, J. Lei, B. Wu, Y. Wang, M. Zhou, A. Xia, L. Zheng, N. Zheng, Chem. Commun. 2013, 49, 300.
- 47H. Yang, Y. Wang, N. Zheng, Nanoscale 2013, 5, 2674.
- 48A. Baksi, M. S. Bootharaju, X. Chen, H. Häkkinen, T. Pradeep, J. Phys. Chem. C 2014, 118, 21722.
- 49S. Wickramasinghe, A. Atnagulov, B. E. C. Conn, B. Yoon, R. N. Barnett, W. P. Griffith, U. Landman, T. P. Bigioni, J. Am. Chem. Soc. 2015, 137, 11550.
- 50C. P. Joshi, M. S. Bootharaju, M. J. Alhilaly, O. M. Bakr, J. Am. Chem. Soc. 2015, 137, 11578.
- 51N. Xia, J. Yang, Z. Wu, Nanoscale 2015, 7, 10013.
- 52M. S. Bootharaju, V. M. Burlakov, T. M. D. Besong, C. P. Joshi, L. G. AbdulHalim, D. M. Black, R. L. Whetten, A. Goriely, O. M. Bakr, Chem. Mater. 2015, 27, 4289.
- 53J. Yan, H. Su, H. Yang, C. Hu, S. Malola, S. Lin, B. K. Teo, H. Hakkinen, N. Zheng, J. Am. Chem. Soc. 2016, 138, 12751.
- 54K. R. Krishnadas, A. Ghosh, A. Baksi, I. Chakraborty, G. Natarajan, T. Pradeep, J. Am. Chem. Soc. 2016, 138, 140.
- 55S. Wang, Y. Song, S. Jin, X. Liu, J. Zhang, Y. Pei, X. Meng, M. Chen, P. Li, M. Zhu, J. Am. Chem. Soc. 2015, 137, 4018.
- 56M. S. Bootharaju, H. Chang, G. Deng, S. Malola, W. Baek, H. Hakkinen, N. Zheng, T. Hyeon, J. Am. Chem. Soc. 2019, 141, 8422.
- 57Q. Yu, C.-Y. Liu, J. Phys. Chem. C 2009, 113, 12766.
- 58Y. Wang, Y. Zhang, F. Wang, D. E. Giblin, J. Hoy, H. W. Rohrs, R. A. Loomis, W. E. Buhro, Chem. Mater. 2014, 26, 2233.
- 59P. Dagtepe, V. Chikan, J. Jasinski, V. J. Leppert, J. Phys. Chem. C 2007, 111, 14977.
- 60C. M. Evans, L. Guo, J. J. Peterson, S. Maccagnano-Zacher, T. D. Krauss, Nano Lett. 2008, 8, 2896.
- 61A. N. Beecher, X. Yang, J. H. Palmer, A. L. LaGrassa, P. Juhas, S. J. Billinge, J. S. Owen, J. Am. Chem. Soc. 2014, 136, 10645.
- 62J. Yang, R. Fainblat, S. G. Kwon, F. Muckel, J. H. Yu, H. Terlinden, B. H. Kim, D. Iavarone, M. K. Choi, I. Y. Kim, I. Park, H. K. Hong, J. Lee, J. S. Son, Z. Lee, K. Kang, S. J. Hwang, G. Bacher, T. Hyeon, J. Am. Chem. Soc. 2015, 137, 12776.
- 63J. H. Yu, X. Liu, K. E. Kweon, J. Joo, J. Park, K. T. Ko, D. W. Lee, S. Shen, K. Tivakornsasithorn, J. S. Son, J. H. Park, Y. W. Kim, G. S. Hwang, M. Dobrowolska, J. K. Furdyna, T. Hyeon, Nat. Mater. 2010, 9, 47.
- 64Y. Wang, Y. Zhou, Y. Zhang, W. E. Buhro, Inorg. Chem. 2015, 54, 1165.
- 65Y. Zhou, R. Jiang, Y. Wang, H. W. Rohrs, N. P. Rath, W. E. Buhro, Inorg. Chem. 2019, 58, 1815.
- 66J. Yang, F. Muckel, W. Baek, R. Fainblat, H. Chang, G. Bacher, T. Hyeon, J. Am. Chem. Soc. 2017, 139, 6761.
- 67J. Yang, F. Muckel, B. K. Choi, S. Lorenz, I. Y. Kim, J. Ackermann, H. Chang, T. Czerney, V. S. Kale, S. J. Hwang, G. Bacher, T. Hyeon, Nano Lett. 2018, 18, 7350.
- 68W. Baek, M. S. Bootharaju, K. M. Walsh, S. Lee, D. R. Gamelin, T. Hyeon, Nat. Mater. 2021, 20, 650.
- 69V. N. Soloviev, A. Eichhofer, D. Fenske, U. Banin, J. Am. Chem. Soc. 2001, 123, 2354.
- 70V. N. Soloviev, A. Eichhöfer, D. Fenske, U. Banin, J. Am. Chem. Soc. 2000, 122, 2673.
- 71D. C. Gary, S. E. Flowers, W. Kaminsky, A. Petrone, X. Li, B. M. Cossairt, J. Am. Chem. Soc. 2016, 138, 1510.
- 72L. Xie, Y. Shen, D. Franke, V. Sebastian, M. G. Bawendi, K. F. Jensen, J. Am. Chem. Soc. 2016, 138, 13469.
- 73H. Chang, B. H. Kim, H. Y. Jeong, J. H. Moon, M. Park, K. Shin, S. I. Chae, J. Lee, T. Kang, B. K. Choi, J. Yang, M. S. Bootharaju, H. Song, S. H. An, K. M. Park, J. Y. Oh, H. Lee, M. S. Kim, J. Park, T. Hyeon, J. Am. Chem. Soc. 2019, 141, 7037.
- 74S. M. Oh, D. N. Hendrickson, K. L. Hassett, R. E. Davis, J. Am. Chem. Soc. 1984, 106, 7984.
- 75A. K. Powell, S. L. Heath, D. Gatteschi, L. Pardi, R. Sessoli, G. Spina, F. Del Giallo, F. Pieralli, J. Am. Chem. Soc. 1995, 117, 2491.
- 76W. Micklitz, S. J. Lippard, Inorg. Chem. 1988, 27, 3067.
- 77R. Bagai, M. R. Daniels, K. A. Abboud, G. Christou, Inorg. Chem. 2008, 47, 3318.
- 78A. K. Boudalis, V. Tangoulis, C. P. Raptopoulou, A. Terzis, J.-P. Tuchagues, S. P. Perlepes, Inorg. Chim. Acta 2004, 357, 1345.
- 79K. L. Taft, S. J. Lippard, J. Am. Chem. Soc. 1990, 112, 9629.
- 80O. Sadeghi, L. N. Zakharov, M. Nyman, Science 2015, 347, 1359.
- 81J. Burger, P. Klüfers, Angew. Chem. Int. Ed. 1997, 36, 776.
- 82K. L. Taft, G. C. Papaefthymiou, S. J. Lippard, Science 1993, 259, 1302.
- 83I. Chakraborty, P. Baran, Y. Sanakis, A. Simopoulos, E. Fachini, R. G. Raptis, Inorg. Chem. 2008, 47, 11734.
- 84J. Polte, R. Erler, A. F. Thunemann, S. Sokolov, T. T. Ahner, K. Rademann, F. Emmerling, R. Kraehnert, ACS Nano 2010, 4, 1076.
- 85S. R. Perala, S. Kumar, Langmuir 2013, 29, 9863.
- 86J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55.
- 87M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, J. Chem. Soc., Chem. Commun. 1995, 1655.
- 88M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 1994, 801.
- 89M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, R. L. Whetten, J. Phys. Chem. B 1997, 101, 3706.
- 90T. G. Schaaff, R. L. Whetten, J. Phys. Chem. B 1999, 103, 9394.
- 91T. G. Schaaff, R. L. Whetten, J. Phys. Chem. B 2000, 104, 2630.
- 92Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc. 2005, 127, 5261.
- 93Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, J. Phys. Chem. B 2006, 110, 12218.
- 94R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu, A. Mohanty, N. Garg, J. Phys. Chem. Lett. 2010, 1, 2903.
- 95C. Zeng, Y. Chen, A. Das, R. Jin, J. Phys. Chem. Lett. 2015, 6, 2976.
- 96J. Polte, T. T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A. F. Thunemann, R. Kraehnert, J. Am. Chem. Soc. 2010, 132, 1296.
- 97Y. Lu, W. Chen, Chem. Soc. Rev. 2012, 41, 3594.
- 98X. Kang, Y. Li, M. Zhu, R. Jin, Chem. Soc. Rev. 2020, 49, 6443.
- 99T. Kawawaki, A. Ebina, Y. Hosokawa, S. Ozaki, D. Suzuki, S. Hossain, Y. Negishi, Small 2021, 17, e2005328.
- 100N. Xia, Z. Wu, Chem. Sci. 2020, 12, 2368.
- 101J. Yu, S. A. Patel, R. M. Dickson, Angew. Chem. Int. Ed. 2007, 46, 2028.
- 102M. S. Kim, M. A. Abbas, J. H. Bang, Bull. Kor. Chem. Soc. 2016, 37, 791.
- 103C. Besson, E. E. Finney, R. G. Finke, Chem. Mater. 2005, 17, 4925.
- 104C. Besson, E. E. Finney, R. G. Finke, J. Am. Chem. Soc. 2005, 127, 8179.
- 105N. Goswami, Q. Yao, T. Chen, J. Xie, Coord. Chem. Rev. 2016, 329, 1.
- 106M. S. Bootharaju, C. P. Joshi, M. J. Alhilaly, O. M. Bakr, Chem. Mater. 2016, 28, 3292.
- 107X. Kang, M. Zhu, Chem. Mater. 2019, 31, 9939.
- 108J. van Embden, P. Mulvaney, Langmuir 2005, 21, 10226.
- 109S. Kudera, M. Zanella, C. Giannini, A. Rizzo, Y. Li, G. Gigli, R. Cingolani, G. Ciccarella, W. Spahl, W. J. Parak, L. Manna, Adv. Mater. 2007, 19, 548.
- 110H. S. Chen, R. V. Kumar, J. Phys. Chem. C 2008, 113, 31.
- 111J. S. Owen, E. M. Chan, H. Liu, A. P. Alivisatos, J. Am. Chem. Soc. 2010, 132, 18206.
- 112C. M. Evans, M. E. Evans, T. D. Krauss, J. Am. Chem. Soc. 2010, 132, 10973.
- 113M. Zanella, A. Z. Abbasi, A. K. Schaper, W. J. Parak, J. Phys. Chem. C 2010, 114, 6205.
- 114S. M. Harrell, J. R. McBride, S. J. Rosenthal, Chem. Mater. 2013, 25, 1199.
- 115A. Kasuya, R. Sivamohan, Y. A. Barnakov, I. M. Dmitruk, T. Nirasawa, V. R. Romanyuk, V. Kumar, S. V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R. V. Belosludov, V. Sundararajan, Y. Kawazoe, Nat. Mater. 2004, 3, 99.
- 116Y. P. Varshni, Physica 1967, 34, 149.
- 117J. Joo, J. S. Son, S. G. Kwon, J. H. Yu, T. Hyeon, J. Am. Chem. Soc. 2006, 128, 5632.
- 118D. C. Gary, A. Petrone, X. Li, B. M. Cossairt, Chem. Commun. 2016, 53, 161.
- 119J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
- 120S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N. M. Hwang, J. G. Park, T. Hyeon, J. Am. Chem. Soc. 2007, 129, 12571.
- 121K. M. Jensen, H. L. Andersen, C. Tyrsted, E. D. Bojesen, A. C. Dippel, N. Lock, S. J. Billinge, B. B. Iversen, M. Christensen, ACS Nano 2014, 8, 10704.
- 122D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, UK 2006.
- 123T. Liu, E. Diemann, H. Li, A. W. Dress, A. Muller, Nature 2003, 426, 59.
- 124D. L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 2010, 49, 1736.
- 125V. W. Day, W. G. Klemperer, Science 1985, 228, 533.
- 126J. S. Anderson, Nature 1937, 140, 850.
- 127J. F. Keggin, Nature 1933, 131, 908.
- 128B. Dawson, Acta Crystallogr. 1953, 6, 113.
- 129M. H. Alizadeh, S. P. Harmalker, Y. Jeannin, J. Martin-Frere, M. T. Pope, J. Am. Chem. Soc. 1985, 107, 2662.
- 130A. Ghosh, O. F. Mohammed, O. M. Bakr, Acc. Chem. Res. 2018, 51, 3094.
- 131Y. Negishi, K. Igarashi, K. Munakata, W. Ohgake, K. Nobusada, Chem. Commun. 2012, 48, 660.
- 132M. S. Bootharaju, C. P. Joshi, M. R. Parida, O. F. Mohammed, O. M. Bakr, Angew. Chem. Int. Ed. 2016, 128, 934.
10.1002/ange.201509381 Google Scholar
- 133M. S. Bootharaju, S. M. Kozlov, Z. Cao, A. Shkurenko, A. M. El-Zohry, O. F. Mohammed, M. Eddaoudi, O. M. Bakr, L. Cavallo, J.-M. Basset, Chem. Mater. 2018, 30, 2719.
- 134K. Zheng, V. Fung, X. Yuan, D. E. Jiang, J. Xie, J. Am. Chem. Soc. 2019, 141, 18977.
- 135C.-C. Hung, S.-J. Ho, C.-W. Yeh, G.-H. Chen, J.-H. Huang, H.-S. Chen, J. Phys. Chem. C 2017, 121, 28373.
- 136X. Kang, M. Zhu, Chem. Soc. Rev. 2019, 48, 2422.
- 137K. Pyo, V. D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna, D. Lee, J. Am. Chem. Soc. 2015, 137, 8244.
- 138D. Li, B. Li, G. Lee, S. I. Yang, Bull. Kor. Chem. Soc. 2015, 36, 1703.
- 139J. V. Rival, P. Mymoona, K. M. Lakshmi, Nonappa, T. Pradeep, E. S. Shibu, Small 2021, 17, e2005718.
- 140J. Olesiak-Banska, M. Waszkielewicz, P. Obstarczyk, M. Samoc, Chem. Soc. Rev. 2019, 48, 4087.
- 141R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Nano Lett. 2012, 12, 4661.
- 142R. Ho-Wu, S. H. Yau, T. Goodson, ACS Nano 2016, 10, 562.
- 143Y. Chen, D. M. Montana, H. Wei, J. M. Cordero, M. Schneider, X. Le Guevel, O. Chen, O. T. Bruns, M. G. Bawendi, Nano Lett. 2017, 17, 6330.
- 144B. Niesen, B. P. Rand, Adv. Mater. 2014, 26, 1446.
- 145A. Mathew, P. R. Sajanlal, T. Pradeep, Angew. Chem., Int. Ed. 2012, 51, 9596.
- 146A. George, E. S. Shibu, S. M. Maliyekkal, M. S. Bootharaju, T. Pradeep, ACS Appl. Mater. Interfaces 2012, 4, 639.
- 147M. C. Alonso, L. Trapiella-Alfonso, J. M. Fernandez, R. Pereiro, A. Sanz-Medel, Biosens. Bioelectron. 2016, 77, 1055.
- 148S. Basu, A. Paul, A. Chattopadhyay, J. Mater. Chem. A 2016, 4, 1218.
- 149F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Anal. Chem. 2011, 83, 1193.
- 150J. Xie, Y. Zheng, J. Y. Ying, Chem. Commun. 2010, 46, 961.
- 151B. Adhikari, A. Banerjee, Chem. Mater. 2010, 22, 4364.
- 152H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, Analyst 2010, 135, 1406.
- 153D. Hu, Z. Sheng, P. Gong, P. Zhang, L. Cai, Analyst 2010, 135, 1411.
- 154H. C. Chang, Y. F. Chang, N. C. Fan, J. A. Ho, ACS Appl. Mater. Interfaces 2014, 6, 18824.
- 155M. A. Muhammed, P. K. Verma, S. K. Pal, R. C. Kumar, S. Paul, R. V. Omkumar, T. Pradeep, Chem. – Eur. J. 2009, 15, 10110.
- 156X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Chem. – Asian J. 2013, 8, 858.
- 157H. Kawasaki, S. Kumar, G. Li, C. Zeng, D. R. Kauffman, J. Yoshimoto, Y. Iwasaki, R. Jin, Chem. Mater. 2014, 26, 2777.
- 158A. McLean, R. Wang, Y. Huo, A. Cooke, T. Hopkins, N. Potter, Q. Li, J. Isaac, J. Haidar, R. Jin, R. Kopelman, ACS Appl. Nano Mater. 2020, 3, 1420.
- 159O. A. Wong, R. J. Hansen, T. W. Ni, C. L. Heinecke, W. S. Compel, D. L. Gustafson, C. J. Ackerson, Nanoscale 2013, 5, 10525.
- 160X. D. Zhang, Z. Luo, J. Chen, X. Shen, S. Song, Y. Sun, S. Fan, F. Fan, D. T. Leong, J. Xie, Adv. Mater. 2014, 26, 4565.
- 161X. D. Zhang, Z. Luo, J. Chen, S. Song, X. Yuan, X. Shen, H. Wang, Y. Sun, K. Gao, L. Zhang, S. Fan, D. T. Leong, M. Guo, J. Xie, Sci. Rep. 2015, 5, 8669.
- 162H. Chang, N. S. Karan, K. Shin, M. S. Bootharaju, S. Nah, S. I. Chae, W. Baek, S. Lee, J. Kim, Y. J. Son, T. Kang, G. Ko, S. H. Kwon, T. Hyeon, J. Am. Chem. Soc. 2021, 143, 326.
- 163M. Haruta, Chem. Rec. 2003, 3, 75.
- 164A. Corma, P. Concepcion, M. Boronat, M. J. Sabater, J. Navas, M. J. Yacaman, E. Larios, A. Posadas, M. A. Lopez-Quintela, D. Buceta, E. Mendoza, G. Guilera, A. Mayoral, Nat. Chem. 2013, 5, 775.
- 165A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science 2008, 321, 1331.
- 166V. R. Jupally, A. C. Dharmaratne, D. Crasto, A. J. Huckaba, C. Kumara, P. R. Nimmala, N. Kothalawala, J. H. Delcamp, A. Dass, Chem. Commun. 2014, 50, 9895.
- 167W. H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev. 2015, 115, 12936.
- 168H. Seong, V. Efremov, G. Park, H. Kim, J. S. Yoo, D. Lee, Angew. Chem. Int. Ed. 2021, 60, 14563.
- 169K. Kwak, D. Lee, Acc. Chem. Res. 2019, 52, 12.
- 170X. Nie, H. Qian, Q. Ge, H. Xu, R. Jin, ACS Nano 2012, 6, 6014.
- 171J. Fang, J. Li, B. Zhang, X. Yuan, H. Asakura, T. Tanaka, K. Teramura, J. Xie, N. Yan, Nanoscale 2015, 7, 6325.
- 172G. Li, R. Jin, J. Am. Chem. Soc. 2014, 136, 11347.
- 173D. R. Kauffman, D. Alfonso, C. Matranga, P. Ohodnicki, X. Deng, R. C. Siva, C. Zeng, R. Jin, Chem. Sci. 2014, 5, 3151.
- 174N. Sakai, T. Tatsuma, Adv. Mater. 2010, 22, 3185.
- 175A. Kogo, N. Sakai, T. Tatsuma, Electrochem. Commun. 2010, 12, 996.
- 176C. Yu, G. Li, S. Kumar, H. Kawasaki, R. Jin, J. Phys. Chem. Lett. 2013, 4, 2847.
- 177Y. Negishi, M. Mizuno, M. Hirayama, M. Omatoi, T. Takayama, A. Iwase, A. Kudo, Nanoscale 2013, 5, 7188.
- 178F. X. Xiao, S. F. Hung, J. Miao, H. Y. Wang, H. Yang, B. Liu, Small 2015, 11, 554.