Experimental Investigation of Operating Parameters in Power Generation by Lab-Scale Reverse Electro-Dialysis (RED)
Insoo Choi
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Division of Energy Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
These authors contributed equally to the paper.Search for more papers by this authorJun Young Han
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
These authors contributed equally to the paper.Search for more papers by this authorSung Jong Yoo
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorDirk Henkensmeier
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorJin Young Kim
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Green School, Korea University, Seoul 02841, Republic of Korea
Search for more papers by this authorSo Young Lee
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorJonghee Han
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorSuk Woo Nam
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Green School, Korea University, Seoul 02841, Republic of Korea
Search for more papers by this authorCorresponding Author
Hyoung-Juhn Kim
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorCorresponding Author
Jong Hyun Jang
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Green School, Korea University, Seoul 02841, Republic of Korea
Search for more papers by this authorInsoo Choi
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Division of Energy Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
These authors contributed equally to the paper.Search for more papers by this authorJun Young Han
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
These authors contributed equally to the paper.Search for more papers by this authorSung Jong Yoo
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorDirk Henkensmeier
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorJin Young Kim
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Green School, Korea University, Seoul 02841, Republic of Korea
Search for more papers by this authorSo Young Lee
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorJonghee Han
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorSuk Woo Nam
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Green School, Korea University, Seoul 02841, Republic of Korea
Search for more papers by this authorCorresponding Author
Hyoung-Juhn Kim
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Search for more papers by this authorCorresponding Author
Jong Hyun Jang
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Green School, Korea University, Seoul 02841, Republic of Korea
Search for more papers by this authorAbstract
The reverse electro-dialysis (RED) is a renewable technology to produce electricity by mixing of differently concentrated water. In this study, the authors fabricated lab-scale RED, and attempted to evaluate the RED performance upon different operating parameters. Firstly, the effect of salinity ratio on the RED performance was examined by varying the concentration of low-salinity water. The performance was optimized by an increase in open circuit voltage (OCV) and cell resistance with salinity ratio. Individual resistances were analyzed by electrochemical impedance spectroscopy, and their impacts on power output were addressed. Second, the effect of flow rate of salinity solutions was studied, and it was found to affect the concentration polarization in RED. Lastly, the effect of the flow rate of electrode rinse solution was investigated, which increased the ionic shortcut current and decreased boundary layer resistance accordingly. Consequently, estimations on the trends in power output by changing operating parameters were made to determine the effective operation of RED.
References
- 1 R. E. Pattle, Nature 1954, 174, 660.
- 2 J. N. Weinstein, Science 1976, 191, 557.
- 3 J. Kuleszo, C. Kroeze, J. Post, B. M. Fekete, J. Integr. Environ. Sci. 2010, 7, 89.
- 4Energy Information Administration, http://www.eia.doe.gov 2012.
- 5 Z. Guy, J. Bejamin, J. Feinberg, E. M. V. Hoek, Energy Environ. Sci. 2011, 4, 4423.
- 6 J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, Chem. Eng. J. 2011, 166, 256.
- 7 P. Dlugolecki, K. Nymeijer, S. J. Metz, M. Wessling, J. Membr. Sci. 2008, 319, 214.
- 8 J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, G. J. Harmsen, J. Membr. Sci. 2009, 343, 7.
- 9 D. A. Vermass, M. Saakes, K. Nijmeijer, J. Membr. Sci. 2011, 385–386, 234.
- 10 D. A. Vermass, M. Saakes, K. Nijmeijer, J. Membr. Sci. 2014, 453, 312.
- 11 E. Guler, R. Elizen, M. Saakes, K. Nijmeijer, J. Membr. Sci. 2014, 458, 136.
- 12 K. Kwon, S. J. Lee, L. Li, C. Han, D. Kim, Int. J. Energy Res. 2014, 38, 530.
- 13 E. Guler, Y. Zhang, M. Saakes, K. Nijmeijer, ChemSusChem 2012, 5, 2262.
- 14 E. Guler, R. Elizen, D. A. Vermass, M. Saakes, K. Nijmeijer, J. Membr. Sci. 2013, 446, 266.
- 15 J. G. Hong, Y. Chen, J. Membr. Sci. 2014, 460, 139.
- 16 J. W. Post, H. V. M. Hamelers, C. J. N. Buisman, Environ. Sci. Technol. 2008, 42, 5785.
- 17 P. Dlugolecki, A. Gambier, K. Nijmeijer, M. Wessling, Environ. Sci. Technol. 2009, 43, 6888.
- 18 D. A. Vermass, M. Saakes, K. Nijmeijer, Environ. Sci. Technol. 2011, 45, 7089.
- 19 P. Dlugolecki, J. Dabrowska, K. Nijmeijer, M. Wessling, J. Membr. Sci. 2010, 347, 101.
- 20 J. Balster, D. F. Stamatialis, M. Wessling, J. Membr. Sci. 2010, 360, 185.
- 21 D.-K. Kim, C. Duan, Y.-F. Chem, A. Majumdar, Microfluid. Nanofluid. 2010, 9, 1215.
- 22 J. Jagur-Grodzinski, R. Kramer, Ind. Eng. Chem. Process. Des. Dev. 1986, 25, 443.
- 23 M. Turek, B. Bandura, Desalination 2007, 205, 67.
- 24 J. Veerman, J. W. Post, M. Saakes, S. J. Metz, G. J. Harmsen, J. Membr. Sci. 2008, 310, 418.
- 25 J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, J. Appl. Electrochem. 2010, 40, 1461.
- 26 O. S. Burheim, F. Seland, J. G. Pharoah, S. Kjelstrup, Desalination 2012, 285, 147.
- 27 O. Scialdone, C. Guarisco, S. Grispo, A. D. Angelo, A. Galia, J. Electroanal. Chem. 2012, 681, 66.
- 28 O. Scialdone, A. Albanese, A. D. Angelo, A. Galia, C. Guarisco, J. Electroanal. Chem. 2013, 704, 1.
- 29 F. Suda, T. Matsuo, D. Ushioda, Energy 2007, 32, 165.
- 30 D. A. Vermass, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, K. Nijmeijer, Energy Environ. Sci. 2013, 6, 643.
- 31 D.-K. Kim, J. Mech. Sci. Technol. 2011, 25, 5.
- 32 D. A. Vermass, E. Guler, M. Saakes, K. Nijmeijer, Energy Procedia 2012, 20, 170.
- 33 L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, Desalin. Water Treat. 2012, 48, 390.
- 34 K. S. Kim, W. Ryoo, M.-S. Chun, G.-Y. Chung, Desalination 2013, 318, 79.
- 35 S. Pawlowski, J. G. Crespo, S. Velizarov, J. Membr. Sci. 2014, 462, 96.
- 36 D. A. Vermass, J. Veerman, N. Y. Yip, M. Elimelech, M. Saakes, K. Nijmeijer, ACS Sustain. Chem. Eng. 2013, 1, 1295.
- 37 Y. Kim, W. S. Walker, D. F. Lawler, Desalination 2011, 274, 54.
- 38 E. Brauns, Desalin. Water Treat. 2013, 51, 6429.
- 39 L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, Chem. Eng. Trans. 2013, 32, 1879.
- 40 L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, J. Membr. Sci. 2014, 468, 133.
- 41 M. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle, G. Micale, Chem. Eng. Res. Des. 2015, 93, 441.
- 42 J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, C. J. N. Buisman, J. Membr. Sci. 2007, 288, 218.
- 43 M. Tedesco, A. Cipollina, A. Tamburini, W. Van Baak, G. Micale, Desalin. Water Treat. 2012, 49, 404.
- 44 J. G. Hong, W. Zhang, Y. Chen, Appl. Energy 2013, 110, 244.
- 45 N. Y. Yip, D. A. Vermass, K. Nijmeijer, M. Elimelech, Environ. Sci. Technol. 2014, 48, 4925.
- 46 A. Daniilidis, D. A. Vermass, R. Herber, K. Nijmeijer, Renew. Energy 2014, 64, 123.
- 47 http://www.selemion.com/SELC.pdf 2013.
- 48
T.-C. Huang, F.-N. Tsai, I.-Y. Yu, J. Chin. Chem. Soc. 1973, 20, 12.
10.1002/jccs.197300017 Google Scholar
- 49 Y. Tanake, Int. J. Chem. Eng. Appl. 2012, 2012, 1.
- 50 X. T. Le, T. H. Bui, P. Viel, T. Berthelot, S. Palacin, J. Membr. Sci. 2009, 340, 133.
- 51 J. S. Park, J. H. Choi, J. J. Woo, S. H. Moon, J. Colloid Interface Sci. 2006, 300, 655.
- 52 L. X. Tuan, M. Verbanck, C. Buess-Herman, H. D. Hurwitz, J. Membr. Sci. 2006, 284, 67.
- 53 International Electrochemical Commission, Expression of performance of electrochemical analyzers, Part 3: Electrolytic conductivity, Multiple 2007, 24.
- 54 G. M. Geise, A. J. Curtis, M. C. Hatzell, M. A. Hickner, B. E. Logan, Environ. Sci. Technol. Lett. 2014, 1, 36.
- 55 S. L. Udall, Proceedings of the First International Symposium on Water Desalination, 1965, p. 333.