The low-temperature heat capacity of solid proteins
Jay Edelman
Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92717
Search for more papers by this authorJay Edelman
Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92717
Search for more papers by this authorAbstract
Several harmonic models of protein fluctuations are used to calculate the heat capacity. They get the spectral density of conformational modes from inelastic neutron scattering, normal mode calculations, or macroscopic elasticity (Debye model). It is assumed that the low-frequency spectral density depends only weakly on temperature and protein species. The Debye model predicts temperatures below which modes are primarily in their ground states: 10 and 80 K for the lattice and conformational modes, respectively. The models differ most below 100 K. The mode calculations yield the most accurate predictions, though all three models are within twofold of the data. The heat capacity has the power law form aTb for T < 30 K. The experimental b's of proteins are 1.6–1.8, and the theoretical, 1.1–1.3. One possible explanation for the discrepancy is the occurrence of transitions between discrete conformations. All of the models approach the measured data in the range 100–200 K. They are very similar above 200 K, where the heat capacity includes significant contributions from bond stretching and bending. This masks the possible anharmonic behavior of the conformational modes. Hydration substantially increases the heat capacity above 200 K. This effect seems to be a consequence of conformational transitions that have higher energy than the ones seen with low hydration. The analysis also predicts that denaturation with constant hydration produces a negligible increase of heat capacity. The larger increment in solution arises from the different hydration of the folded and unfolded states, and is responsible for the existence of cold denaturation. This phenomenon is thus predicted not to occur when the hydration is constant.
References
- 1 Pace, C. N. (1975) CRC Crit. Rev. Biochem. 3, 1–43.
- 2 Edelhoch, H. & Osborne, J. C. Jr. (1976) Adv. Protein Chem. 30, 183–250.
- 3 Morild, E. (1981) Adv. Protein Chem. 34, 93–166.
- 4 Privalov, P. L. (1979) Adv. Protein Chem. 33, 167–241.
- 5 Privalov, P. L. (1982) Adv. Protein Chem. 35, 1–104.
- 6 Privalov, P. L. (1989) Ann. Rev. Biophys. Biophys. Chem. 18, 47–69.
- 7 Schellman, J. A. (1987) Ann. Rev. Biophys. Biophys. Chem. 16, 115–137.
- 8 Sturtevant, J. M. (1977) Proc. Natl. Acad. Sci. USA 74, 2236–2240.
- 9 Baldwin, R. L. (1986) Proc. Natl. Acad. Sci. USA 83, 8069–8072.
- 10 Becktel, W. J. & Schellman, J. A. (1987) Biopolymers 26, 1859–1877.
- 11 Franks, F., Hatley, R. H. M. & Friedman, H. L. (1988) Biophys. Chem. 31, 307–315.
- 12 Privalov, P. L. & Gill, S. F. (1988) Adv. Protein Chem. 39, 191–234.
- 13 Pace, C. N. & Laurents, D. V. (1989) Biochemistry 28, 2520–2525.
- 14 Chan, H. S. & Dill, K. A. (1989) Macromolecules 22, 4559–4573.
- 15 Brandts, J. F., Hu, C. Q., Lin, L.-N. & Mas, M. T. (1989) Biochemistry 28, 8588–8596.
- 16 Shakhnovich, E. I. & Finkelstein, A. V. (1989) Biopolymers 28, 1667–1680.
- 17 Dill, K. A., Alonso, D. O. V. & Hutchinson, K. (1989) Biochemistry 28, 5439–5449.
- 18 Dill, K. A. (1985) Biochemistry 24, 1501–1509.
- 19 Dill, K. A. (1990) Biochemistry 29, 7133–7155.
- 20 Murphy, K. P., Privalov, P. L. & Gill, S. J. (1990) Science 247, 559–561.
- 21 Nemethy, G. & Scheraga, H. A. (1962) J. Chem. Phys. 66, 1773–1789.
- 22 Go, M., Go, N. & Scheraga, H. A. (1970) J. Chem. Phys. 52, 2060–2079.
- 23 Lifshitz, I. M., Grosberg, A. Yu. & Khokhlov, A. R. (1978) Rev. Mod. Phys. 50, 683–713.
- 24 Urry, D. W. & Venkatachalam, C. M. (1983) Int. J. Quantum Chem. Quantum Biol. Symp. 10, 81–93.
- 25 Parak, F. & Knapp, E. W. (1984) Proc. Natl. Acad. Sci. USA 81, 7088–7092.
- 26 Karplus, M., Ichiye, T. & Pettitt, B. M. (1987) Biophys. J. 52, 1083–1085.
- 27 Privalov, P. L., Tiktopulo, E. I., Venyaminov, S. Yu., Griko, Yu. V., Makhatadze, G. I. & Khechinashvili, N. N. (1989) J. Mol. Biol. 205, 737–750.
- 28 Shakhnovich, E. L. & Gutin, A. M. (1989) Biophys. Chem. 34, 187–199.
- 29 Bryngelson, J. D. & Wolynes, P. G. (1990) Biopolymers 30, 177–188.
- 30 Cooper, A. (1984) Prog. Biophys. Mol. Biol. 44, 181–214.
- 31
Brooks, C. L., III,
Karplus, M. &
Pettitt, B. M.
(1988)
Adv. Chem. Phys.
71, 1–259.
10.1002/9780470141205.ch1 Google Scholar
- 32 Ringe, D. & Petsko, G. A. (1985) Prog. Biophys. Mol. Biol. 45, 197–235.
- 33 Smith, J. L., Hendrickson, W. L., Honzatko, R. B. & Sheriff, S. (1986) Biochemistry 25, 5018–5027.
- 34 Takano, T. & Dickerson, R. E. (1981) J. Mol. Biol. 153, 95–115.
- 35 Finzel, P. C. & Salemme, F. R. (1986) Biophys. J. 49, 73–76.
- 36 Brick, P. & Blow, D. M. (1987) J. Mol. Biol. 194, 287–297.
- 37 Hartmann, H., Paiak, F., Steigemann, W., Petsko, G. A., Ponzi, D. R. & Frauenfelder, H. (1982) Proc. Natl. Acad. Sci. USA 79, 4967–4971.
- 38 Ansari, A., Berendzen, J., Bowne, S. F., Frauenfelder, H., Iben, I. E. T., Sauke, T. B., Shyamsunder, E. & Young, R. D. (1985) Proc. Natl. Acad. Sci. USA 82, 5000–5004.
- 39 Cobau, W. G., LeGrange, J. D. & Austin, R. H. (1985) Biophys. J. 47, 781–786.
- 40 Holz, M., Lindau, M. & Heyn, M. P. (1988) Biophys. J. 53, 623–633.
- 41 Zimanyiu, L., Ormos, P. & Lanyi, J. K. (1989) Biochemistry 28, 1656–1661.
- 42 Alcala, J. R., Gratton, E. & Prendergast, F. G. (1987) Biophys. J. 51, 597–604.
- 43 Vincent, M., Brochon, J.-C., Merola, F., Jordi, W. & Gallay, J. (1988) Biochemistry 27, 8752–8761.
- 44 Bismuto, E., Irace, G. & Gratton, E. (1989) Biochemistry 28, 1508–1512.
- 45 Parak, F., Frolov, E. N., Mossbauer, R. L. & Goldanskii, V. I. (1981) J. Mol. Biol. 145, 825–833.
- 46 Knapp, E. W., Fischer, S. F. & Parak, F. (1982) J. Phys. Chem. 86, 5042–5047.
- 47 Krupyanskii, Yu. F., Parak, F., Goldanskii, V. I., Mossbauer, R. L., Gaubman, E. E., Engelmann, H. & Suzdalev, I. P. (1982) Z. Naturforsch. C 37, 57–62.
- 48 Bauminger, E. R., Cohen, S. G., Nowik, I., Ofer, S. & Yariv, J. (1983) Proc. Natl. Acad. Sci. USA 80, 736–740.
- 49 Knapp, E. W., Fischer, S. F. & Parak, F. (1983) J. Chem. Phys. 78, 4701–4711.
- 50 Ichiye, T. & Karplus, M. (1987) Proteins 2, 236–259.
- 51 Noguti, T. & Go, N. (1989) Proteins 5, 132–138.
- 52 Noguti, T. & Go, N. (1989) Proteins 5, 97–103.
- 53 Parak, F. (1986) Methods Enzymol. 127, 196–206.
- 54 Morozov, V. N. & Morozova, T. Ya. (1986) J. Theor. Biol. 121, 73–88.
- 55 Doster, W., Bachleinter, A., Dunau, R., Hiebl, M. & Luscher, E. (1986) Biophys. J. 50, 213–219.
- 56 Bialek, W. & Goldstein, R. F. (1985) Biophys. J. 48, 1027–1044.
- 57 Czerminski, R. & Elber, R. (1989) Proc. Natl. Acad. Sci. USA 86, 6963–6967.
- 58 Owicki, J. C. & Scheraga, H. A. (1977) J. Am. Chem. Soc. 99, 7403–7412.
- 59 Ikegami, A. (1977) Biophys. Chem. 6, 117–130.
- 60 Go, N., Go, M. & Scheraga, H. A. (1974) Macromolecules 7, 137–139.
- 61 Karplus, M. & Kushick, J. N. (1981) Macromolecules 14, 325–332.
- 62 Doster, W., Cusack, S. & Petry, W. (1989) Nature (London) 337, 754–756.
- 63 Loncharich, R. J. & Brooks, B. R. (1990) J. Mol. Biol. 215, 439–455.
- 64 Reif, F. (1965) Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York, pp. 1–651.
- 65 Bialek, W. & Onuchic, N. (1988) Proc. Natl. Acad. Sci. USA 85, 5908–5912.
- 66 Drexel, W. & Peticolas, W. L. (1975) Biopolymers 14, 715–721.
- 67 Krimm, S. & Bandekar, J. (1986) Adv. Protein Chem. 38, 181–364.
- 68 Genzel, L., Kremer, F., Poglitsch, A. & Bechtold, G. (1983) Biopolymers 22, 1715–1729.
- 69 Levitt, M., Sander, C. & Stern, P. S. (1985) J. Mol. Biol. 181, 423–447.
- 70 Cusack, S. (1988) J. Mol. Biol. 202, 903–908.
- 71 Sessions, R. B., Dauber-Osguthorpe, P. & Osgu-thorpe, D. J. (1989) J. Mol. Biol. 209, 617–633.
- 72 Gibrat, J.-F. & Go, N. (1990) Proteins 8, 258–279.
- 73 Smith, J., Cusack, S., Pezzeca, U., Brooks, B. & Karplus, M. (1986) J. Chem. Phys. 85, 3636–3654.
- 74 Go, N., Noguti, T. & Nishikawa, T. (1983) Proc. Natl. Acad. Sci. USA 80, 3696–3700.
- 75 Chou, K.-C. (1988) Biophys. Chem. 30, 3–48.
- 76 Thacher, T. & Rabitz, H. (1988) Biophys. J. 54, 695–704.
- 77 Levy, R. M., Srinivasan, A. R., Olson, W. K. & McCammon, J. A. (1984) Biopolymers 23, 1099–1112.
- 78 Robson, B. & Platt, E. (1986) J. Mol. Biol. 188, 259–281.
- 79 Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S. Jr. & Weiner, P. (1984) J. Am. Chem. Soc. 106, 765–784.
- 80 Zamyatnin, A. A. (1984) Ann. Rev. Biophys. Bioeng. 13, 145–165.
- 81 Schoenborn, B. P. (1988) J. Mol. Biol. 201, 741–749.
- 82 Frauenfelder, H., Hartmann, H., Karplus, M., Kuntz, I. D., Kuriyan, J., Parak, F., Petsko, G. A., Ringe, D., Tilton, R. F. Jr., Connolly, M. L. & Max, N. (1987) Biochemistry 26, 254–261.
- 83 Morozov, V. N. & Gevorkian, S. G. (1985) Biopolymers 24, 1785–1799.
- 84 Millero, F. J., Ward, G. K. & Chetirkin, P. (1976) J. Biol. Chem. 251, 4001–4004.
- 85 Kharakoz, D. P. (1989) Biophys. Chem. 34, 115–125.
- 86 Gekko, K. & Noguchi, H. (1979) J. Phys. Chem. 83, 2706–2714.
- 87 Eden, D., Matthew, J. B., Rosa, J. J. & Richards, F. M. (1982) Proc. Natl. Acad. Sci. USA 79, 815–819.
- 88 Gavish, B., Gratton, E. & Hardy, C. J. (1983) Proc. Natl. Acad. Sci. USA 80, 750–754.
- 89 Gekko, K. & Hasegawa, Y. (1986) Biochemistry 25, 6563–6571.
- 90 Iqbal, M. & Verrall, R. E. (1988) J. Biol. Chem. 263, 4159–4165.
- 91 Kundrot, C. E. & Richards, F. M. (1987) J. Mol. Biol. 193, 157–170.
- 92 Morozov, V. N. & Morozova, T. Ya. (1981) Biopolymers 20, 451–467.
- 93 Hvidt, S., Henry, F., Nestler, M., Greaser, M. L. & Ferry, J. D. (1982) Biochemistry 21, 4064–4073.
- 94 Morozova, T. Ya. & Morozov, V. N. (1982) J. Mol. Biol. 157, 173–179.
- 95 Caspar, D. L. D., Clarage, J., Salunke, D. M. & Clarage, M. (1988) Nature (London) 332, 659–662.
- 96 Love, A. E. H. (1927) A treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, pp. 1–643.
- 97 Hutchens, J. O., Cole, A. G. & Stout, J. W. (1969) J. Biol. Chem. 244, 26–32.
- 98 Binder, K. & Young, A. P. (1986) Rev. Mod. Phys. 58, 801–976.
- 99 Gelin, B. R. & Karplus, M. (1979) Biochemistry 18, 1256–1268.
- 100 Ghosh, I. & McCammon, J. A. (1987) Biophys. J. 51, 637–641.
- 101 Poglitsch, A., Kremer, F. & Genzel, L. (1984) J. Mol. Biol. 173, 137–142.
- 102 Nadler, W. & Schulten, K. (1984) Proc. Natl. Acad. Sci. USA 81, 5719–5723.
- 103 Franks, F. & Eagland, D. (1975) CRC Crit. Rev. Biochem. 3, 165–219.
- 104 Schellman, J. A. (1975) Biopolymers 14, 999–1018.
- 105 Schellman, J. A. (1978) Biopolymers 17, 1305–1322.
- 106 Zaccai, G., Cendrin, F., Haik, Y., Borochov, N. & Eisenberg, H. (1989) J. Mol. Biol. 208, 491–500.
- 107 Privalov, P. L., Griko, Yu. V., Venyaminov, S. Yu. & Kutyshenko, V. P. (1986) J. Mol. Biol. 190, 487–498.
- 108 Griko, Y. V., Privalov, P. L., Sturtevant, J. M. & Venyaminov, S. Yu. (1988) Proc. Natl. Acad. Sci. USA 85, 3343–3347.
- 109 Hutchens, J. O., Cole, A. G. & Stout, J. W. (1969) J. Biol. Chem. 244, 33–35.
- 110 Schulte, A. & Murray, R. (1987) Phys. Rev. B36, 1772–1774.
- 111 Singh, G. P., Schink, H. J., Lohneysen, H. V., Parak, F. & Hunklinger, S. (1984) Z. Phys. B55, 23–26.
- 112 Colvin, J. T. & Stapleton, H. J. (1985) J. Chem. Phys. 82, 4699–4706.
- 113 Krumhansl, J. A. (1986) Phys. Rev. Lett. 56, 2696–2699.
- 114 Elber, R. & Karplus, M. (1986) Phys. Rev. Lett. 56, 394–397.