A new lease of life for an old enzyme
Giuseppe Martini
The Istituto Internazionale di Genetica e Biofisica di Napoli, Via Marconi 12, 80125 Napoli, Italy
Search for more papers by this authorMatilde Valeria Ursini
The Istituto Internazionale di Genetica e Biofisica di Napoli, Via Marconi 12, 80125 Napoli, Italy
Search for more papers by this authorGiuseppe Martini
The Istituto Internazionale di Genetica e Biofisica di Napoli, Via Marconi 12, 80125 Napoli, Italy
Search for more papers by this authorMatilde Valeria Ursini
The Istituto Internazionale di Genetica e Biofisica di Napoli, Via Marconi 12, 80125 Napoli, Italy
Search for more papers by this authorAbstract
We review here some recent data about glucose-6-phosphate dehydrogenase (G6PD), the first and key regulatory enzyme of the pentose phosphate pathway. New evidence has been presented to suggest that malaria is a selective agent for G6PD deficiency, which is the most common enzymopathy in man, and that G6PD deficiency, generally considered to be a mild and benign condition, is significantly disadvantageous in certain environmental conditions. At the molecular level, the enzyme structure has recently been elucidated and mechanisms regulating G6PD gene expression have been determined. A G6PD knock-out mutation introduced in mouse cells makes them exquisitely sensitive to oxidative stress, indicating that this ubiquitous metabolic enzyme has a major role in the defence against oxidative stress, even in eukaryotic nucleated cells, which have several alternative routes for providing the same protection. Because of the high prevalence of G6PD deficiency in many populations, it is expected that these findings will prompt further studies to ascertain the putative role of G6PD deficiency in conditions such as carcinogenesis and ageing.
References
- 1 Beutler, E., Mathai,C. K. and Smith, J. E. (1968). Biochemical variants of glucose 6-phosphate dehydrogenase giving rise to congenital nonspherocytic hemolytic disease. Blood 31, 131–150.
- 2 Boyer, S. H. and Graham, J. B. (1965). Linkage between the X chromosome loci for glucose 6-phosphate dehydrogenase electrophoretic variation and hemophilia A. Am. J. Hum. Genet. 17, 320–324.
- 3 Childs, B., Zinkman, W., Browne, E. A., Kimbro,E. L. and Torbert, J. V. (1958). A genetic study of a defect in glutathione metabolism of the erythrocytes. Bull. Johns Hopkins Hosp. 102, 21–37.
- 4 Porter, I. H. et al. (1964). Variation of glucose 6-phosphate dehydrogenase in different populations. Lancet 1, 895–899.
- 5 Davidson, R. G., Nitowsky,H. M. and Childs, B. (1963). Demonstration of two populations of cells in the human female heterozygous for glucose 6-phosphate dehydrogenase variants. Proc. Natl Acad. Sci. USA 50, 481–485.
- 6 Gartler, S. and Linder, D. (1964). Selection in mammalian mosaic cell populations. Cold Spring Harbor Symp. Quant. Biol. 29, 253–260.
- 7 Becker, W. M. (1984). The phosphogluconate pathway. Biochemistry 314–318.
- 8 Jeffery, J., Persson, B., Wood, I., Bergman, T., Jeffery, R. and Jornvall, H. (1993). Glucose-6-phosphate dehydrogenase. Eur. J. Biochem. 212, 41–49.
- 9 Cerutti, P. A. (1985). Prooxidant states and tumor promotion. Science 227, 375–381.
- 10 Malins, D. C., Polissar,N. L. and Gunselman, S. J. (1996). Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc. Natl Acad. Sci. USA 93, 2557–2563
- 11 Ames, B. N. (1983). Dietary carcinogens and anticarcinogens. Science 221, 1256–1264.
- 12 Fraenkel, D. G. (1968). Selection of Escherichia coli mutants lacking glucose 6-phosphate dehydrogenase or gluconate 6-phosphate dehydrogenase. J. Bacteriol. 95, 1267–1271.
- 13 Storz, G., Tartaglia, L. A., S. B. and Ames, B. N. (1990). Bacterial defences against oxidative stress. Trends Genet. 6, 363–368.
- 14 Thomas, D., Cherest, H. and Surdin-Kerjan, Y. (1991). Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulphur. EMBO J. 10, 547–553.
- 15 Nogae, I. and Johnston, M. (1990). Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose 6-phosphate dehydrogenase. Gene 96, 161–169.
- 16 Meister, A. and Anderson, M. E. (1983). Glutathione. Annu. Rev. Biochem. 52, 711–760.
- 17 Beutler, E. (1994). G6PD deficiency. Blood 84, 3613–3636.
- 18 Luzzatto, L. and Metha, A. (1995). Glucose 6-phosphate dehydrogenase deficiency. in The Metabolic Basis of Inherited Disease (ed. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle), pp. 3367–3398. MacGraw Hill, New York.
- 19 Beutler, E., Vulliamy, T. and Luzzatto, L. (1996). Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cells, Mol. Dis. 22, 49–56.
- 20 Allison, A. C. (1960). Glucose 6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature 186, 531–533.
- 21 Luzzatto, L. (1979). Genetics of red cells and susceptibility to malaria. Blood 54, 961–976.
- 22 Stamatoyannopoulos, G., Panayitopoulos, A. and Motulsky, A. G. (1966). The distribution of glucose 6-phosphate dehydrogenase deficiency in Greece. Am. J. Hum. Genet. 18, 296–298.
- 23 Piazza, A. et al. 1985. Genetic and population structure of four Sardinian villages. Ann. Hum. Genet. 49, 47–51.
- 24 Biezle, U., Ayeni, O., Lucas,A. O. and Luzzatto, L. (1972). Glucose 6-phosphate dehydrogenase deficiency and malaria. Greater resistance of females heterozygous for enzyme deficiency and males with non-deficient variant. Lancet 107, 138–141.
- 25 Trager, W. and Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–680.
- 26 Roth, E. F. J., Raventos-Suarez, C., Rinaldi, A. and Nagel, R. L. (1983). Glucose 6-phosphate dehydrogenase deficiency inhibits in vitro growth of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 80, 298–231.
- 27 Friedman, M. J. (1979). Oxidant damage mediates variant red cell resistance to malaria. Nature 280, 245–246.
- 28 Ruwende, C. et al. 1995. Natural selection of hemi-and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246–249.
- 29 Cohen, P. and Rosemeyer, M. A. (1969). Subunit interactions of human glucose 6-phosphate dehydrogenase from human erythrocytes. Eur. J. Biochem. 8, 8–15.
- 30 Jeffery, J., Persson, B., Wood, I., Bergman, T., Jeffery, R. and Jornvall, H. (1993). Glucose-6-phosphate dehydrogenase. Structure-function relationship and the Pichia jadinii enzyme structure. Eur. J. Biochem. 212, 41–49.
- 31 Rowland, P. K., Basak, A., Gover, S., Levy,H. R. and Adams, M. (1994). The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0A resolution. Structure 2, 1073–1087.
- 32 Bonsignore, A. Cancedda, R., Nicolini, A., Damiani, G. and De Flora, A. (1971). Metabolism of human erythrocyte glucose 6-phosphate dehydrogenase. Interconversion of multiple molecular forms. Arch. Biochem. Biophys. 147, 493–501.
- 33 Filosa, S. et al. (1994). A novel single-base mutation in the glucose-6-phosphate dehydrogenase gene is associated with chronic non-spherocytic haemolytic anaemia. Hum. Genet. 94, 560–562.
- 34 Camardella, L., Romano, M., Di Prisco, G. and Descalzi-Cancedda, F. (1981). Human erythrocytes glucose-6-phosphate dehydrogenase: labelling of a reactive lysil group by pyridoxal-5′-phosphate. Biochem. Biophys. Res. Comm. 103, 1384–1389.
- 35 Hirono, A., Kuhl, W., Gelbart, T., Forman, L., Fairbanks,V. F. and Beutler, E. (1989). Identification of the binding domain for NADP+ of human glucose 6-phosphate dehydrogenase by sequence analysis of mutants. Proc. Natl Acad. Sci. USA 86, 10015–10017.
- 36 Lee, W. T. and Levy, H. R. (1992). Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction. Protein Sci. 1, 329–334.
- 37 Adams, M. J., Basak, A. K., Gover, S. Rowland, P. and Levy, H. R. (1993). Site-directed mutagenesis to facilitate X-ray structural studies of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase. Protein Sci. 2, 859–862.
- 38 Naylor, C. E. et al. (1996). Glucose 6-phosphate dehydrogenase mutations causing enzyme deficiency in a model of the tertiary strucutre of the human enzyme. Blood. 87, 2974–2982
- 39 Pandolfi, P. P., Sonati, F., Rivi, R., Mason, P., Grosveld, F. and Luzzato, L. (1995). Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209–5215.
- 40 Jennings, G. T., Sadleir,J. W. and Stevenson, P. M. (1990). Purification and properties of NADP-dependent isocitrate dehydrogenase from the corpus luteum. Biochem. Biophys. Acta 1034, 219–227.
- 41 MacDonald, M. J. (1995). Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. J. Biol. Chem. 270, 20051–20058.
- 42 Coleman, D. L., and Kuzava, J. E. (1991). Genetic regulation of malic enzyme activity in the mouse. J. Biol. Chem. 266, 21997–22002.
- 43 Antonenkov, V. D. (1989). Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes. Eur. J. Biochem. 183, 75–82.
- 44 W. H. O. (1990). Current and future dimension of the HIV/AIDS pandemic. Geneva, WHO/GPA.
- 45 Piot, P., Kapita, B. M., Were, J. B. O., Laga, M. and Colebunders, R. L. (1991). AIDS in Africa, the first decade and challenges for the late 1990s. AIDS 5, 81–85.
- 46 Luzzatto, L. and Mehta, A. (1988). Glucose-6-phosphate dehydrogenase deficiency. In The Metabolic Basis of Inherited Disease (ed. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle), pp. 2237–2265. MacGraw Hill, New York.
- 47 Flores, S. C., Marecki, J. C., Harper, K. P., Bose,S. K. and Nelson, S. K. (1993). Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl Acad. Sci. USA 90, 7632–7636.
- 48 Zauli, G. et al. 1993. Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res. 53, 4481–4485.
- 49 Meyaard, L. S. et al. (1992). Programmed death of T cells in HIV infection. Science 257, 217–219.
- 50 Roederer, M. et al. 1990. Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-cysteine. Proc. Natl Acad. Sci. USA 87, 4884–4888.
- 51 Buhl, R. et al. 1993. Activation of alveolar macrophages in asymptomatic HIV-infected individuals. J. Immunol. 150, 1019–1028.
- 52 Chaudhri, G., Clark, I. A., Hunt, N. H., Cowden,W. B. and Ceredig, R. (1986). Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J. Immunol. 137, 2646–2652.
- 53 Los, M. et al. 1995. IL-2 gene expression and NF-kB activation through CD28 requires reactive oxygen production by 5-lypoxigenase. EMBO J. 14, 3731–3740.
- 54 Poli, G. et al. 1990. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc. Natl Acad. Sci. USA 87, 782–785.
- 55 Kalebic, T., Kinter, A., Poli, G., Anderson, M. E., Meister, A. and Fauci, A. S. (1991). Suppression of human immunodeficiency virus expression in chronically infected monocytic cells by glutathione, glutathione ester, and N-acetysteine. Proc. Natl Acad. Sci. USA 88, 986–990.
- 56 Sandstrom, P. A., Roberts, B., Folks,T. M. and Buttke, T. M. (1993). HIV gene expression enhances T cells susceptibility to hydrogen peroxide induced apoptosis. AIDS Res. Hum. Retroviruses 9, 1107–1113.
- 57 Taylor, P. J. et al. (1992). Activation of expression of genes coding for extracellular matrix proteins in Tat-producing glioblastoma cells. Proc. Natl Acad. Sci. USA 89, 9617–9621.
- 58 Puri, R. K. and Aggarwal, B. B. (1992). Human immunodeficiency virus type 1 Tat gene upregulates interleukin 4 receptors on a human B-lymphoblastoid cell lineage. Cancer Res. 52, 3787–3790.
- 59 Buonaguro, L. et al. 1992. Effect of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J. Virol. 66, 7159–7167.
- 60 Ursini, M. V., Lettieri, T., Braddock, M. and Martini, G. (1993). Enhanced activity of human G6PD promoter transfected in HeLa cells producing high levels of HIV-1 Tat. Virology 196, 338–343.
- 61 Borgstahl, G. E. O. et al. (1992). The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 71, 107–118.
- 62 Kirkman, H. N. and Gaetani, G. F. (1978). Catalase, a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl Acad. Sci. USA 81, 4343.
- 63 Meloni, T., Carta, F., Forteleoni, G., Carta, A., Ena, F. and Meloni, G. F. (1990). Glucose 6-phosphate dehydrogenase deficiency and catarhats of patients in northern Sardinia. Am. J. Ophthalmol. 110, 661–664.
- 64 Ferraris, A. M., Broccia, G., Meloni, T., Forteleoni, G. and Gaetani, G. F. (1988). Glucose 6-phosphste dehydrogenase deficiency and incidence of haematological malignancy. Am. J. Hum. Genet. 42, 516–520.
- 65 Heller, P., Best, W. R., Nelsen,R. B. and Becktel, J. (1979). Clinical implications of sickle cell trait and glucose 6-phosphate dehydrogenase deficiency in hospitalized black male patients. N. Engl. J. Med. 300, 1001–1015.