PAR proteins and the establishment of cell polarity during C. elegans development
Corresponding Author
Jeremy Nance
Fred Hutchinson Cancer Research Center, Seattle, WA
Skirball Institute and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016.Search for more papers by this authorCorresponding Author
Jeremy Nance
Fred Hutchinson Cancer Research Center, Seattle, WA
Skirball Institute and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016.Search for more papers by this authorAbstract
Cells become polarized to develop functional specializations and to distribute developmental determinants unequally during division. Studies that began in the nematode C. elegans have identified a group of largely conserved proteins, called PAR proteins, that play key roles in the polarization of many different cell types. During initial stages of cell polarization, certain PAR proteins become distributed asymmetrically along the cell cortex and subsequently direct the localization and/or activity of other proteins. Here I discuss recent findings on how PAR proteins become and remain asymmetric in three different contexts during C. elegans development: anterior–posterior polarization of the one-cell embryo, apicobasal polarization of non-epithelial early embryonic cells, and apicobasal polarization of epithelial cells. Although polarity within each of these cell types requires PAR proteins, the cues and regulators of PAR asymmetry can differ. BioEssays 27:126–135, 2005. © 2005 Wiley Periodicals, Inc.
References
- 1 Müller H-AJ, Bossinger O. 2003. Molecular networks controlling epithelial cell polarity in development. Mech Dev 120: 1231–1256.
- 2 Knoblich JA. 2001. Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2: 11–20.
- 3 Shi S-H, Jan LY, Jan Y-N. 2003. Hippocampal neuronal polarity specificed by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112: 63–75.
- 4 Etienne-Manneville S, Hall A. 2001. Integrin-mediated Cdc42 activation controls cell polarity in migrating astrocytes through PKCζ. Cell 106: 489–498.
- 5 Ohno S. 2001. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 13: 641–648.
- 6 Pellettieri J, Seydoux G. 2002. Anterior-posterior polarity in C. elegans and Drosophila—PARallels and differences. Science 298: 1946–1950.
- 7 Wodarz A. 2002. Establishing cell polarity in development. Nat Cell Biol 4: E39–E44.
- 8 Nigon V, Guerrier P, Monin H. 1960. L'architecture polaire de l'oeuf et les movements des constituants cellulaires au cours des premieres etapes du developpement chez quelques nematodes. Bull Biol Fr Belg 94: 131–202.
- 9 Hird SN, White JG. 1993. Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J Cell Biol 121: 1343–1355.
- 10 Goldstein B, Hird SN. 1996. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122: 1467–1474.
- 11 Tenenhaus C, Schubert C, Seydoux G. 1998. Genetic requirements for PIE-1 localization and inhibition of gene expression in the embryonic germ lineage of Caenorhabditis elegans. Dev Biol 200: 212–224.
- 12 Mello CC, Schubert C, Draper B, Zhang W, Lobel R, et al. 1996. The PIE-1 protein and germline specification in C. elegans embryos. Nature 382: 710–712.
- 13 Hird SN, Paulsen JE, Strome S. 1996. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localization. Development 122: 1303–1312.
- 14 Strome S, Wood WB. 1982. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of C. elegans. Proc Natl Acad Sci 79: 1558–1562.
- 15 Albertson DG. 1984. Formation of the first cleavage spindle in nematode embryos. Dev Biol 101: 61–72.
- 16 Morton DG, Shakes DC, Nugent S, Dichoso D, Wang W, et al. 2002. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev Biol 241: 47–58.
- 17 Kemphues KJ, Priess JR, Morton DG, Cheng N. 1988. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.
- 18 Watts JL, Etemad-Moghadam B, Guo S, Boyd L, Draper BW, et al. 1996. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122: 3133–140.
- 19 Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, et al. 1998. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125: 3607–3614.
- 20 Etemad-Moghadam B, Guo S, Kemphues KJ. 1995. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83: 743–752.
- 21 Hung TJ, Kemphues KJ. 1999. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126: 127–135.
- 22 Guo S, Kemphues KJ. 1995. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611–620.
- 23 Boyd L, Guo S, Levitan D, Stinchcomb DT, Kemphues KJ. 1996. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122: 3075–3084.
- 24 Schubert CM, Lin R, de Vries CJ, Plasterk RHA, Priess JR. 2000. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5: 671–682.
- 25 Cuenca AA, Schetter A, Aceto D, Kemphues K, Seydoux G. 2003. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130: 1255–1265.
- 26 Colombo K, Grill SW, Kimple RJ, Willard FS, Siderovski DP, et al. 2003. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300: 1957–1961.
- 27 Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J. 2003. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 13: 1029–1037.
- 28 Tsou MF, Hayashi A, DeBella LR, McGrath G, Rose LS. 2002. LET-99 determines spindle position and is asymmetrically enriched in response to PAR polarity cues in C. elegans embryos. Development 129: 4469–4481.
- 29 Schneider SQ, Bowerman B. 2003. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu Rev Genet 37: 221–249.
- 30 Munro E, Nance J, Priess JR. 2004. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7: 413–424.
- 31 Cheeks RJ, Canman JC, Gabriel WN, Meyer N, Strome S, et al. 2004. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 14: 851–862.
- 32 Strome S. 1986. Fluorescence visualization of the distribution of microfilaments in gonads and early Caenorhabditis elegans embryos. Dev Biol 107: 337–354.
- 33 Hird SN. 1996. Cortical actin movements during the first cell cycle of the Caenorhabditis elegans embryo. J Cell Sci 109: 525–533.
- 34 Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV. 1999. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 13: 2838–2851.
- 35 Kirby CM, Kusch M, Kemphues K. 1990. Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol 142: 203–215.
- 36 Severson A, Baillie DL, Bowerman B. 2002. A formin homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol 12: 2066–2075.
- 37 Severson AF, Bowerman B. 2003. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J Cell Biol 161: 21–26.
- 38 Shelton CA, Carter JC, Ellis GC, Bowerman B. 1999. The non-muscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior-posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. J Cell Biol 146: 439–451.
- 39 Guo S, Kemphues KJ. 1996. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382: 455–458.
- 40 White JG, Borisy GG. 1983. On the mechanism of cytokinesis in animal cells. J Theor Biol 101: 289–316.
- 41 Bray D, White JG. 1988. Cortical flow in animal cells. Science 239: 883–888.
- 42 Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, et al. 1998. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 143: 95–106.
- 43 Joberty G, Petersen C, Gao L, Macara IG. 2000. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2: 531–539.
- 44 Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, et al. 2000. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2: 540–547.
- 45 Qiu RG, Abo A, Steven Martin G. 2000. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr Biol 10: 697–707.
- 46 Nance J, Munro EM, Priess JR. 2003. C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development 130: 5339–5350.
- 47 Erickson JW, Cerione RA. 2001. Multiple roles for Cdc42 in cell regulation. Curr Opin Cell Biol 13: 153–157.
- 48 Gotta M, Abraham MC, Ahringer J. 2001. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 11: 482–488.
- 49 Kay AJ, Hunter CP. 2001. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol 11: 474–481.
- 50 Johansson A, Driessens M, Aspenstrom P. 2000. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J Cell Sci 113: 3267–3275.
- 51 Garrard SM, Capaldo CT, Gao L, Rosen MK, Macara IG, et al. 2003. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J 22: 1125–1133.
- 52 Wallenfang MR, Seydoux G. 2000. Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 408: 89–92.
- 53 O'Connell KF, Maxwell KN, White JG. 2000. The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev Biol 222: 55–70.
- 54 Rappleye CA, Tagawa A, Lyczak R, Bowerman B, Aroian RV. 2002. The anaphase-promoting complex and separin are required for embryonic anterior-posterior axis formation. Dev Cell 2: 195–206.
- 55 Hyman AA, White JG. 1987. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol 105: 2123–2135.
- 56 Sadler PL, Shakes DC. 2000. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development 127: 355–366.
- 57 Cowan CR, Hyman AA. 2004. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431: 92–96.
- 58 Kemp CA, Kopish KR, Zipperlen P, Ahringer J, O'Connell KF. 2004. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell 6: 511–523.
- 59 Hamill DR, Severson AF, Carter JC, Bowerman B. 2002. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev Cell 3: 673–684.
- 60 Schumacher JM, Ashcroft N, Donovan PJ, Golden A. 1998. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans. Development 125: 4391–4402.
- 61 Hannak E, Kirkham M, Hyman AA, Oegema K. 2001. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155: 1109–1116.
- 62 Strome S, Wood WB. 1983. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35: 15–25.
- 63 Liu J, Vasudevan S, Kipreos ET. 2004. CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development 131: 3513–3525.
- 64 Sonneville R, Gönczy P. 2004. zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. Development 131: 3527–3543.
- 65 Peters J-M. 2002. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9: 931–943.
- 66 Tyers M, Jorgensen P. 2000. Proteolysis and the cell cycle: with this RING I do destroy. Curr Opin Genet Dev 10: 54.
- 67 Shakes DC, Sadler PL, Schumacher JM, Abdolrasulnia M, Golden A. 2003. Developmental defects observed in hypomorphic anaphase-promoting complex mutants are linked to cell cycle abnormalities. Development 130: 1605–1620.
- 68 Muslin AJ, Tanner JW, Allen PM, Shaw AS. 1996. Interaction of 14-3-3 proteins with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.
- 69 Fu H, Subramanian RR, Masters SC. 2000. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.
- 70 Benton R, Johnston DS. 2003. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115: 691–704.
- 71 Benton R, Palacios IM, St. Johnston D. 2002. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Cell 3: 659–671.
- 72 Watts JL, Morton DG, Bestman J, Kemphues KJ. 2000. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127: 1467–1475.
- 73 Nance J, Priess JR. 2002. Cell polarity and gastrulation in C. elegans. Development 129: 387–397.
- 74 Lee J-Y, Goldstein B. 2003. Mechanisms of cell positioning during C. elegans gastrulation. Development 130: 307–320.
- 75 Leung B, Hermann GJ, Priess JR. 1999. Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 216: 114–134.
- 76 Bossinger O, Klebes A, Segbert C, Theres C, Knust E. 2001. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev Biol 230: 29–42.
- 77 McMahon L, Legouis R, Vonesch J-L, Labouesse M. 2001. Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci 114: 2265–2277.
- 78 Knust E, Bossinger O. 2002. Composition and formation of intercellular junctions in epithelial cells. Science 298: 1955–1959.
- 79 Kimble J, Hirsh D. 1979. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70: 396–417.
- 80 Aono S, Legouis R, Hoose WA, Kemphues KJ. 2004. PAR-3 is required for epithelial polarity in the distal spermatheca of C. elegans. Development 131: 2865–2874.
- 81 Sharma-Kishore R, White JG, Southgate E, Podbilewicz B. 1999. Formation of the vulva in Caenorhabditis elegans: a paradigm for organogenesis. Development 126: 691–699.
- 82 Hurd DD, Kemphues KJ. 2003. PAR-1 is required for morphogenesis of the Caenorhabditis elegans vulva. Dev Biol 253: 54–65.
- 83 Portereiko MF, Saam J, Mango SE. 2004. ZEN-4/MKLP1 is required to polarize the foregut epithelium. Curr Biol 14: 932–941.
- 84 Mishima M, Kaitna S, Glotzer M. 2002. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2: 41–54.
- 85 Jantsch-Plunger V, Gönczy P, Romano A, Schnabel H, Hamill D, et al. 2000. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149: 1391–1404.
- 86 Powers J, Bossinger O, Rose D, Strome S, Saxton W. 1998. A nematode kinesin required for cleavage furrow advancement. Curr Biol 8: 1133–1136.
- 87 Raich WB, Moran AN, Rothman JH, Hardin J. 1998. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol Biol Cell 9: 2037–2049.
- 88
Legouis R,
Gansmuller A,
Sookhareea S,
Bosher JM,
Baillie DL, et al.
2000.
LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans.
Nat Cell Biol
2:
415–422.
10.1038/35017046 Google Scholar
- 89 Bilder D, Perrimon N. 2000. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403: 676–680.
- 90 Wu SL, Staudinger J, Olson EN, Rubin CS. 1998. Structure, expression, and properties of an atypical protein kinase C (PKC3) from Caenorhabditis elegans: PKC3 is required for the normal progression of embryogenesis and viability of the organism. J Biol Chem 273: 1130–1143.