Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK)
Vanessa Manni
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorAntonella Lisi
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorSabrina Rieti
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorAnnalucia Serafino
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorMario Ledda
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorLivio Giuliani
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Venezia, Venice, Italy
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Insediamenti Produttivi e Interazione con l'Ambiente (DIPIA), Rome, Italy
Search for more papers by this authorDonatella Sacco
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Insediamenti Produttivi e Interazione con l'Ambiente (DIPIA), Rome, Italy
Search for more papers by this authorEnrico D'Emilia
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Insediamenti Produttivi e Interazione con l'Ambiente (DIPIA), Rome, Italy
Search for more papers by this authorCorresponding Author
Settimio Grimaldi
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Istituto di Neurobiologia e Medicina Molecolare–Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, 00133 Rome, Italy.Search for more papers by this authorVanessa Manni
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorAntonella Lisi
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorSabrina Rieti
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorAnnalucia Serafino
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorMario Ledda
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Search for more papers by this authorLivio Giuliani
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Venezia, Venice, Italy
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Insediamenti Produttivi e Interazione con l'Ambiente (DIPIA), Rome, Italy
Search for more papers by this authorDonatella Sacco
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Insediamenti Produttivi e Interazione con l'Ambiente (DIPIA), Rome, Italy
Search for more papers by this authorEnrico D'Emilia
Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL), Dipartimento Insediamenti Produttivi e Interazione con l'Ambiente (DIPIA), Rome, Italy
Search for more papers by this authorCorresponding Author
Settimio Grimaldi
Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
Istituto di Neurobiologia e Medicina Molecolare–Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, 00133 Rome, Italy.Search for more papers by this authorAbstract
This work concerns the effect of low frequency electromagnetic fields (ELF) on biochemical properties of human oral keratinocytes (HOK). Cells exposed to a 2 mT, 50 Hz, magnetic field, showed by scanning electron microscopy (SEM) modification in shape and morphology; these modifications were also associated with different actin distribution, revealed by phalloidin fluorescence analysis. Moreover, exposed cells had a smaller clonogenic capacity, and decreased cellular growth. Indirect immunofluorescence with fluorescent antibodies against involucrin and β-catenin, both differentiation and adhesion markers, revealed an increase in involucrin and β-catenin expression. The advance in differentiation was confirmed by a decrease of expression of epidermal growth factor (EGF) receptor in exposed cells, supporting the idea that exposure to electromagnetic field carries keratinocytes to higher differentiation level. These observations support the hypothesis that 50 Hz electromagnetic fields may modify cell morphology and interfere in differentiation and cellular adhesion of normal keratinocytes. Bioelectromagnetics 25:118–126, 2004. © 2004 Wiley-Liss, Inc.
REFERENCES
- Adey WR. 1981. Tissue interaction with non-ionizing electromagnetic field. Physiol Rev 61: 435–514.
- Adey WR. 1993. Biological effects of electromagnetic fields. J Cell Biochem 51: 410–416.
-
Adey WR,
Lawrence AF.
1984. In: WR Adey,
AF Lawrence, editors.
Non linear electrodynamics in biological systems.
New York:
Plenum.
10.1007/978-1-4613-2789-9 Google Scholar
- Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, McBride M, Michaelis J, Olsen JH, Tynes T, Verkasalo PK. 2000. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 83: 692–698.
- Barnes PS. 1996. Effect of electromagnetic field on the rate of chemical reactions. Biophysics 41: 801–807.
- Basset CAL. 1993. Beneficial effects of electromagnetic fields. J Cell Biochem 51: 387–393.
- Batta K, Rugg EL, Wilson NJ, West N, Goodyear H, Lane EB, Gratian M, Dopping-Hepenstal P, Moss C, Eady RA. 2000. A keratin 14 ‘knockout’ mutation in recessive epidermolysis bullosa simplex resulting in less severe disease. Br J Dermatol 143: 621–627.
- Bellomo G, Mirabelli F, Vairetti M, Iosi F, Malori W. 1990. Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells. In biochemical and immunocytochemical features. J Cell Physiol 143: 118–128.
-
Blank M,
Findl E.
1987.
Mechanistic approaches to interactions of electromagnetic field with living systems.
New York:
B. Plenum.
10.1007/978-1-4899-1968-7 Google Scholar
- Chiabrera A, Nicolini C, Schwan P. 1985. In: A Chiabrera, editor. Interactions between electromagnetic fields and cells. New York: Plenum.
- Dolk H, Shaddick G, Walls P, Grundy C, Thakrar B, Kleinschmidt I, Elliot P. 1997. Cancer incidence near radio and television transmitters in Great Britain. I. Sutton Coldfield transmitter. Am J Epidemiol 145: 1–9.
- Dominey AM, Wang XJ, King L Jr, Nanney LB, Gagne TA, Sellheyer H, Bundman DS, Longley MA, Rothnangel JA, Greenhalg DA. 1993. Targeted over expression of transforming growth factor alpha in the epidermis of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ 4: 1071–1082.
- Ellinger DC, Chute FS, Vermeulen FE. 1989. Evaluation of a semi cylindrical sollenoid as an application for radio frequency hypertermia. IEEE Trans Biomed Eng 36: 987–994.
- Foster KR, Schwan H. 1995. Dielectric properties of tissues. In: C Polk, E Postow, et al. editors. Handbook of biological effects of electromagnetic fields, 2nd Edn. Boca Raton, FL: CRC Press. pp 27–96.
- Fukunaga M, Oka M, Ichihashi M, Yamamoto T, Matsuzaki H, Kikkawa U. 2001. UV-induced tyrosine phosphorylation of PKC delta and promotion of apoptosis in the HaCaT cell line. Biochem Biophys Res Commun 30; 289: 573–579.
- Glaser R. 1992. Current concepts of the interaction of of weak electromagnetic fields with cells. Bioelectrochem Bioener 27: 255–268.
- Hinsenkamp M, Jercinovic A, De Graef Ch, Wilaert F, Heenen M. 1997. Effects of low frequency pulsed electrical current on keratinocytes in vitro. Bioelectromagnetics 18: 250–254.
- Hsu M, Andl T, Li G, Meinkoth JL, Herlyn M. 2000. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 113: 1535–1542.
- John CF, Morris K, Jordan BR, Thomas B, Mackerness S. 2001. Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. J Exp Bot 52: 1367–1373.
- Jost M, Kari C, Rodeck U. 2000. The EGF receptor-an essential regulator of multiple epidermal functions. Eur J Dematol 10: 505–510.
-
Kaiser F.
1988.
Theory of non-linear excitation. In:
H Frolich, et al. editors.
Biological coherence and response to external stimuli.
Heidelberg, Germany:
Springer. pp
25–48.
10.1007/978-3-642-73309-3_2 Google Scholar
- Kang MK, Bibb C, Baluda MA, Rey O, Park NH. 2000. In vitro replication and differentiation of normal human oral keratinocytes. Exp Cell Res 258: 288–297.
- Karabakhtsian R, Bronde N, Shalts N, Kochlatyi S, Goodman R, Henderson AS. 1994. Calcium is necessary in the cell response to EM fields. FEBS Lett 301: 53–59.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227: 680–685.
- Leszczynski D, Pitsillides CM, Pastila RK, Rox Anderson R, Lin CP. 2001. Laser-beam-triggered microcavitation: A novel method for selective cell destruction. Radiat Res 156: 399–407.
- Liburdy RP. 1992. Calcium signalling in lymphocytes and ELF fields: Evidence for an electric field metric and a site of interaction involving calcium ion channels. FEBS Lett 301: 53–59.
- Lisi A, Pozzi D, Pasquali E, Rieti S, Girasole M, Cricenti A, Generosi R, Serafino AL, Congiu-Castellano A, Ravagnan G, Grimaldi S. 1999. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji). Bioelectromagnetics 21: 46–51.
- Medema JP, Sark MW, Backendorf C, Bos JL. 1994. Calcium inhibits epidermal growth factor-induced activation of p21ras in human primary keratinocytes. Mol Cell Biol 14: 7078–7085.
- Peus D, Hamacher L, Pittelkow MR. 1997. EGF-receptor tyrosine kinase inhibition induces keratinocyte growth arrest and terminal differentiation. J Invest Derm 109: 751–756.
- Phillips JL, Haggren W, Thomas WJ, Jones TI, Adey W. 1992. Magnetic field-induced changes in specific gene transcription. Biochimica Biophysica Acta 1132: 140–144.
-
Pilla AA,
Markov MS.
1992.
Bioeffects of weak electromagnetic fields.
Rev Environ Health
10:
155–169.
10.1515/REVEH.1994.10.3-4.155 Google Scholar
- Pletnev SD. 2000. The use of millimeter band electromagnetic waves in clinical oncology. Crit Rev Biomed Eng 28: 573–587.
- Rusovan A, Kanje M. 1992. Magnetic fields stimulate peripheral nerve regeneration hypophyctiomia rats. Neuroreport 3: 1039–1041.
- Santoro N, Lisi A, Pozzi D, Pasquali E, Serafino A, Grimaldi S. 1997. Effect of extremely low frequency magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim Biophys Acta 1357: 281–290.
- Schlegel R, Phelps WC, Zhang YL, Barbosa M. 1988. Quantitative keratinocyte assay detects two biological activities of human papillomavirus DNA and identifies viral types associated with cervical carcinoma. EMBO J 7: 3181–3187.
- Solomon B, Hagekyriakou J, Trivett MK, Stacker SA, McArthur GA, Cullinane C. 2003. EGFR blockade with ZD1839 (“IRESSA”) potentiates the antitumor effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma. Int J Radiat Oncol Biol Phys 55: 713–723.
- Stauffer PR, Sneed PK, Hashemi H, Phillips TL. 1994. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans BME 41: 17–28.
- Szabo I, Rojavin MA, Rogers TJ, Ziskin MC. 2001. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics 22: 358–364.
- Tenforde TS. 1995. Interaction of extremely low frequency electric and magnetic fields with humans. In: C Polk, E Postow, editors. Handbook of biological effects of electromagnetic fields. 2nd Edn. Boca Raton: CRC Press. pp 185–230.
- Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E. 2001. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 23:104: 605–617.
- Walleczeck J. 1992. Electromagnetic field effect on cells of the immune system: The role of calcium signalling. FASEB J 6: 3177–3185.
- Weaver JC, Astumian RD. 1990. The response of living cells on very weak electric fiels: The thermal noise limit. Science 247: 459–462.
- Zhadin MN. 2001. Review of Russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 22: 27–45.