D. Proton transfer in complex systems, liquids and biological systems: Proton transfer reactions at the surface of Ice. Heterogeneous reactions involved in stratospheric ozone depletion
Bradley J. Gertner
Department of Chemistry and Biochemistry
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0215, USA
Search for more papers by this authorBradley J. Gertner
Department of Chemistry and Biochemistry
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0215, USA
Search for more papers by this authorAbstract
Two heterogeneous reactions on an ice surface that are relevant in connection with stratospheric ozone depletion are discussed theoretically: the hydrolysis of chlorine nitrate, ClONO2, to produce HOC1 and HNO3, and the acid ionization of hydrochloric acid HC1. For the former, a recently proposed proton transfer mechanism actively involving the ice lattice is supported by examination of the ClONO2 hydrolysis energetics when proton transfer is prevented. For the latter, a previously proposed picture of facile HCl ionization at, but not on, the ice surface is supported by the results of a quantum treatment of the proton and of a model investigation of the free energetics of ionization atop the ice surface.
References
- 1 S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, Nature 321, 755 (1986).
- 2 S. Solomon, Rev. Geophysics 26, 131 (1988); Nature 347, 347 (1990); P. J. Crutzen and F. Arnold, Nature 324, 651 (1986); M. B. McElroy, R. J. Salawitch, and S. C. Wofsy, Geophys. Res. Lett. 13, 1296 (1986); O. B. Toon, P. Hamill, R. P. Turco, and J. Pinto, Geophys. Res. Lett. 13, 1284 (1986); R. P. Turco, O. B. Toon, and P. Hamill, J. Geophys. Res. 94, 16493 (1989).
- 3 R. J. Cicerone, Science 237, 35 (1987); M. B. McElroy, R. J. Salawitch, and S. C. Wofsy, Planet. Space Sci. 36, 73 (1988); G. S. Henderson, W. F. J. Evans, and J. C. McConnell, J. Geophys. Res. 95, 1899 (1990); World Meterological Organization (WMO), Scientific Assessment of Stratospheric Ozone: 1989, Report no. 20, Global Ozone Research and Monitoring Project, Geneva, 1990; R. P. Wayne, Chemistry of Atmospheres, p. 126, 2nd ed., Oxford University Press, New York, 1991.
- 4 P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. P. Koplow, J. G. Anderson, R. J. Salawitch, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, C. R. Webster, R. D. May, D. W. Toohey, L. M. Avallone, M. H. Proffitt, M. Loewenstein, J. R. Podolske, K. R. Chan, and S. C. Wofsy, Science 266, 398 (1994).
- 5 M. J. Molina and F. S. Rowland, Nature 249, 810 (1974).
- 6 L. T. Molina and M. J. Molina, J. Phys. Chem. 91, 433 (1987); M. J. Molina, T. L. Tso, L. T. Molina, and F. C. Y. Wang, Science 238, 1253 (1987).
- 7 L. T. Chu, M.-T. Leu, and L. F. Keyser, J. Phys. Chem. 97, 12798 (1993).
- 8 M. A. Tolbert, M. J. Rossi, R. Malhotra, and D. M. Golden, Science 238, 1258 (1987).
- 9 M.-T. Leu, Geophys. Res. Lett. 15, 17 (1988).
- 10 D. R. Hanson and A. R. Ravishankara, J. Phys. Chem. 96, 2682 (1992).
- 11 D. R. Hanson and A. R. Ravishankara, J. Geophys. Res. 96, 5081 (1991).
- 12 J. P. D. Abbatt and M. J. Molina, J. Phys. Chem. 96, 7674 (1992).
- 13 J. R. Sodeau, A. B. Horn, S. F. Banham, and T. G. Koch, J. Phys. Chem. 99, 6258 (1995).
- 14 S. F. Banham, A. B. Horn, T. G. Koch, and J. R. Sodeau, Faraday Discuss. 100, 321 (1995).
- 15 D. R. Hanson, J. Phys. Chem. 99, 13059 (1995).
- 16 For recent reviews, see D. R. Worsnop, C. E. Kolb, M. S. Zaniser, P. Davidovits, L. F. Keyser, M.-T. Leu, M. J. Molina, D. R. Hanson, A. R. Ravishankara, L. R. Williams, and M. A. Tolbert, in: Adv. Ser. Phys. Chem., Vol. 3, Progress and Problems in Atmospheric Chemistry, ed. by J. R. Barker, World Scientific, Singapore, ch. 18, 1995; M. J. Molina, L. T. Molina, and D. M. Golden, J. Phys. Chem. 100, 12888 (1996).
- 17 R. Bianco and J. T. Hynes, J. Phys. Chem. A 102, 309 (1998).
- 18 B. J. Gertner and J. T. Hynes, Science 271, 1563 (1996).
- 19 Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, p. 194, JPL Publ. 94–26, Pasadena, CA, 1994.
- 20 M. Eigen and K. Kustin, J. Am. Chem. Soc. 84, 1355 (1962).
- 21 J. March, Advanced Organic Chemistry, p. 653, 4th ed., Wiley, New York, 1992.
- 22 R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971); W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972); P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973); M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys. 77, 3654 (1982).
- 23 G. W. Spitznagel, Diplomarbeit, Erlangen, 1982; T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. von R. Schleyer, J. Comput. Chem. 4, 294 (1983).
- 24 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
- 25 K. Fukui, J. Phys. Chem. 23, 4161 (1970); Acc. Chem. Res. 14, 363 (1981).
- 26 W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1969); W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 52, 2769 (1970); M. S. Gordon, M. D. Bjorke, F. J. Marsh, and M. S. Korth, J. Am. Chem. Soc. 100, 2670 (1978).
- 27 C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
- 28 A. Tabazadeh and R. P. Turco, J. Geophys. Res. 98, 12727 (1993).
- 29 J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980); M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, J. Am. Chem. Soc. 104, 2997 (1982); W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople, and J. S. Binkley, J. Am. Chem. Soc. 104, 5039 (1982).
- 30 J. P. D. Abbatt, K. D. Beyer, A. F. Fucaloro, J. R. McMahon, P. J. Woolridge, R. Zhang, and M. J. Molina, J. Geophys. Res. 97, 15819 (1992).
- 31 D. R. Haynes, N. J. Tro, and S. M. George, J. Phys. Chem. 96, 8502 (1992).
- 32 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
- 33 B. J. Gertner and J. T. Hynes, Molecular Dynamics Modelling of Semi-infinite Systems: Application to Stratospheric Ice Surfaces, to be submitted.
- 34 M. D. Newton, J. Chem. Phys. 67, 5535 (1977).
- 35
K. Ando and
J. T. Hynes, in:
Structure and Reactivity in Aqueous Solution: Characterization of Chemical and Biological Systems,
p. 143,
ed. by C. J. Cramer and
D. G. Truhlar,
American Chemical Society, Washington, DC,
1994;
10.1021/bk-1994-0568.ch010 Google ScholarJ. Mol. Liq. 64, 25 (1995); J. Phys. Chem. 101, 10464 (1997).
- 36 M. Tachiya, J. Phys. Chem. 93, 7050 (1989).
- 37 C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
- 38 B. R. Johnson, J. Chem. Phys. 67, 4086 (1977).
- 39 G.-J. Kroes and D. C. Clary, Geophys. Res. Lett. 19, 1355 (1992); J. Phys. Chem. 96, 7079 (1992).
- 40 S. H. Robertson and D. C. Clary, Faraday Discuss. 100, 309 (1995).
- 41 B. J. Gertner and J. T. Hynes, Model Molecular Dynamics Simulation of Hydrochloric Acid Ionization at the Surface of Stratospheric Ice, submitted to Faraday Discuss.
- 42 D. R. Hanson and A. R. Ravishankara, J. Phys. Chem. 96, 9441 (1992).
- 43 B. J. Gertner and J. T. Hynes, Hydrogen Halide Acid Ionization in Water Clusters, to be submitted.
- 44 R. Bianco and J. T. Hynes, work in progress.