Design, synthesis, antibacterial evaluation, and computational studies of hybrid oxothiazolidin–1,2,4-triazole scaffolds
Corresponding Author
Prateek Pathak
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Correspondence
Prateek Pathak, Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia 454080.
Email: [email protected] and [email protected]
Amita Verma, Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India.
Email: [email protected] and [email protected]
Search for more papers by this authorJurica Novak
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Search for more papers by this authorParjanya K. Shukla
Krishnarpit Institute of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Prayagraj, Uttar Pradesh, India
Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India
Search for more papers by this authorMaria Grishina
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Search for more papers by this authorVladimir Potemkin
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Search for more papers by this authorCorresponding Author
Amita Verma
Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India
Correspondence
Prateek Pathak, Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia 454080.
Email: [email protected] and [email protected]
Amita Verma, Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Prateek Pathak
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Correspondence
Prateek Pathak, Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia 454080.
Email: [email protected] and [email protected]
Amita Verma, Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India.
Email: [email protected] and [email protected]
Search for more papers by this authorJurica Novak
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Search for more papers by this authorParjanya K. Shukla
Krishnarpit Institute of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Prayagraj, Uttar Pradesh, India
Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India
Search for more papers by this authorMaria Grishina
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Search for more papers by this authorVladimir Potemkin
Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
Search for more papers by this authorCorresponding Author
Amita Verma
Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India
Correspondence
Prateek Pathak, Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia 454080.
Email: [email protected] and [email protected]
Amita Verma, Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India.
Email: [email protected] and [email protected]
Search for more papers by this authorPrateek Pathak and Parjanya K. Shukla contributed equally to this study.
Abstract
Bacterial infections are a serious threat to human health due to the development of resistance against the presently used antibiotics. The problem of growing and widespread antibiotic resistance is only getting worse with the shortage of new classes of antibiotics, creating a substantial unmet medical need in the treatment of serious bacterial infections. Therefore, in the present work, we report 18 novel hybrid thiazolidine–1,2,4-triazole derivatives as DNA gyrase inhibitors. The derivatives were synthesized by multistep organic synthesis and characterized by spectroscopic methods (1H and 13C nuclear magnetic resonance and mass spectroscopy). The derivatives were tested for DNA gyrase inhibition, and the result emphasized that the synthesized derivatives have a tendency to inhibit the function of DNA gyrase. Furthermore, the compounds were also tested for antibacterial activity against three Gram-positive (Bacillus subtilis [NCIM 2063], Bacillus cereus [NCIM 2156], Staphylococcus aureus [NCIM 2079]) and two Gram-negative (Escherichia coli [NCIM 2065], Proteus vulgaris [NCIM 2027]) bacteria. The derivatives showed a significant-to-moderate antibacterial activity with noticeable antibiofilm efficacy. Quantitative structure–activity relationship (QSAR), ADME (absorption, distribution, metabolism, elimination) calculation, molecular docking, radial distribution function, and 2D fingerprinting were also performed to elucidate fundamental structural fragments essential for their bioactivity. These studies suggest that the derivatives 10b and 10n have lead antibacterial properties with significant DNA gyrase inhibitory efficacy, and they can serve as a starting scaffold for the further development of new broad-spectrum antibacterial agents.
CONFLICTS OF INTERESTS
The authors declare that there are no conflicts of interests.
REFERENCES
- 1T. A. Keating, J. V. Newman, N. B. Olivier, L. G. Otterson, B. Andrews, P. A. Boriack-Sjodin, J. N. Breen, P. Doig, J. Dumas, E. Gangl, O. M. Green, S. Y. Guler, M. F. Hentemann, D. Joseph-Mccarthy, S. Kawatkar, A. Kutschke, J. T. Loch, A. R. McKenzie, S. Pradeepan, S. Prasad, G. Martínez-Botella, ACS Chem. Biol. 2012, 7, 1866.
- 2B. Aslam, W. Wang, M. I. Arshad, M. Khurshid, S. Muzammil, M. H. Rasool, M. A. Nisar, R. F. Alvi, M. A. Aslam, M. U. Qamar, M. K. F. Salamat, Z. Baloch, Infect. Drug Resist. 2018, 11, 1645.
- 3N. R. Naylor, R. Atun, N. Zhu, K. Kulasabanathan, S. Silva, A. Chatterjee, G. M. Knight, J. V. Robotham, Antimicrob. Resist. Infect. Control 2018, 7, 58.
- 4S. P. Kawatkar, T. A. Keating, N. B. Olivier, J. N. Breen, O. M. Green, S. Y. Guler, M. F. Hentemann, J. T. Loch, A. R. McKenzie, J. V. Newman, L. G. Otterson, G. Martínez-Botella, J. Med. Chem. 2014, 57, 4584.
- 5F. Gao, T. Wang, J. Xiao, G. Huang, Eur. J. Med. Chem. 2019, 173, 274.
- 6M. Hussain, T. Qadri, Z. Hussain, A. Saeed, P. A. Channar, S. A. Shehzadi, M. Hassan, F. A. Larik, T. Mahmood, A. Malik, Heliyon 2019, 5, 1.
- 7 Centers for Disease Control and Prevention, Antibiotic Resistance Threats in the United States, 2019, U.S. Department of Health and Human Services, CDC, Atlanta, GA 2019.
10.15620/cdc:82532 Google Scholar
- 8M. Wahab Khan, M. Jahangir Alam, M. A. Rashid, R. Chowdhury, Bioorg. Med. Chem. 2005, 13, 4796.
- 9F. Collin, S. Karkare, A. Maxwell, Appl. Microbiol. Biotechnol. 2011, 92, 479.
- 10A. J. Schoeffler, J. M. Berger, Q. Rev. Biophys. 2008, 41, 41.
- 11A. Merino, K. R. Madden, W. S. Lane, J. J. Champoux, D. Reinberg, Nature 1993, 365, 227.
- 12T. Khan, K. Sankhe, V. Suvarna, A. Sherje, K. Patel, B. Dravyakar, Biomed. Pharmacother. 2018, 103, 923.
- 13T. Kirchhausen, J. C. Wang, S. C. Harrison, Cell 1985, 41, 933.
- 14A. Maxwell, D. Lawson, Curr. Top. Med. Chem. 2005, 3, 283.
- 15D. B. Tiz, Ž. Skok, M. Durcik, T. Tomašič, L. P. Mašič, J. Ilaš, A. Zega, G. Draskovits, T. Révész, Á. Nyerges, C. Pál, C. D. Cruz, P. Tammela, D. Žigon, D. Kikelj, N. Zidar, J. Med. Chem. 2019, 167, 269.
- 16J. C. Wang, Untangling the Double Helix: DNA Entanglement and the Action of the DNA Topoisomerases, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 2009.
- 17C. Gao, L. Chang, Z. Xu, X.-F. Yan, C. Ding, F. Zhao, X. Wu, L.-S. Feng, Eur. J. Med. Chem. 2019, 163, 404.
- 18B. Meunier, Acc. Chem. Res. 2008, 41, 69.
- 19S. M. Shaveta, P. Singh, Eur. J. Med. Chem. 2016, 124, 500.
- 20R. Domalaon, T. Idowu, G. G. Zhanel, F. Schweizer, Clin. Microbiol. Rev. 2018, 31, 1.
- 21B. Kaproń, J. J. Łuszczki, A. Płazińska, A. Siwek, T. Karcz, A. Gryboś, G. Nowak, A. Makuch-Kocka, K. Walczak, E. Langner, K. Szalast, S. Marciniak, M. Paczkowska, J. Cielecka-Piontek, L. M. Ciesla, T. Plech, Eur. J. Pharm. Sci. 2019, 129, 42.
- 22S. A. Shahzad, M. Yar, Z. A. Khan, L. Shahzadi, S. A. R. Naqvi, A. Mahmood, S. Ullah, A. J. Shaikh, T. A. Sherazi, A. T. Bale, J. Kukułowicz, M. Bajda, Bioorg. Chem. 2019, 85, 209.
- 23H. A. M. El-Sherief, B. G. M. Youssif, S. N. Abbas Bukhari, A. H. Abdelazeem, M. Abdel-Aziz, H. M. Abdel-Rahman, Eur. J. Med. Chem. 2018, 156, 774.
- 24K. Wittine, M. Stipković Babić, D. Makuc, J. Plavec, S. Kraljević Pavelić, M. Sedić, K. Pavelić, P. Leyssen, J. Neyts, J. Balzarini, M. Mintas, Bioorg. Med. Chem. 2012, 20, 3675.
- 25S. Zhang, Z. Xu, C. Gao, Q.-C. Ren, L. Chang, Z.-S. Lv, L.-S. Feng, Eur. J. Med. Chem. 2017, 138, 501.
- 26P. Pathak, P. K. Shukla, V. Naumovich, M. Grishina, A. Verma, V. Potemkin, Arch. Pharm. (Weinheim) 2020, 353, 1.
- 27R. Y. Jin, C. Y. Zeng, X. H. Liang, X. H. Sun, Y. F. Liu, Y. Y. Wang, S. Zhou, Bioorg. Chem. 2018, 80, 253.
- 28J. Xu, Y. Cao, J. Zhang, S. Yu, Y. Zou, X. Chai, Q. Wu, D. Zhang, Y. Jiang, Q. Sun, Eur. J. Med. Chem. 2011, 46, 3142.
- 29S. Eswaran, A. V. Adhikari, N. S. Shetty, Eur. J. Med. Chem. 2009, 44, 4637.
- 30R. Kharb, P. C. Sharma, M. S. Yar, J. Enzyme Inhib. Med. Chem. 2011, 26, 1.
- 31D. R. Godhani, A. A. Jogel, P. B. Dobariya, A. M. Sanghani, J. Saudi Chem. Soc. 2016, 20, S523.
- 32V. P. M. Rahman, S. Mukhtar, W. H. Ansari, G. Lemiere, Eur. J. Med. Chem. 2005, 40, 173.
- 33P. Pathak, P. K. Shukla, V. Naumovich, M. Grishina, V. Potemkin, A. Verma, Synth. Commun. 2019, 49, 2725.
- 34S. Raza, S. P. Srivastava, D. S. Srivastava, A. K. Srivastava, W. Haq, S. B. Katti, Eur. J. Med. Chem. 2013, 63, 611.
- 35R. K. Rawal, Y. S. Prabhakar, S. B. Katti, E. De Clercq, Bioorg. Med. Chem. 2005, 13, 6771.
- 36C. J. Andres, J. J. Bronson, S. V. D′Andrea, M. S. Deshpande, P. J. Falk, K. A. Grant-Young, W. E. Harte, H.-T. Ho, P. F. Misco, J. G. Robertson, D. Stock, Y. Sun, A. W. Walsh, Bioorg. Med. Chem. Lett. 2000, 10, 715.
- 37K. Babaoglu, M. A. Page, V. C. Jones, M. R. McNeil, C. Dong, J. H. Naismith, R. E. Lee, Bioorg. Med. Chem. Lett. 2003, 13, 3227.
- 38A. Masih, J. K. Shrivastava, H. R. Bhat, U. P. Singh, Chem. Biol. Drug Des. 2020, 96, 861.
- 39M. A. Salem, A. Ragab, A. A. Askar, A. El-Khalafawy, A. H. Makhlouf, Eur. J. Med. Chem. 2020, 188, 1.
- 40C. A. Lipinski, Drug Discov. Today Technol. 2004, 1, 337.
- 41N. Das, J. Madhavan, A. Selvi, D. Das, 3 Biotech. 2019, 9, 231.
- 42C. H. Ballow, G. W. Amsden, Ann. Pharmacother. 1992, 26, 1253.
- 43C. Csongradi, J. du Plessis, M. E. Aucamp, M. Gerber, J. Pharm. Biopharm. 2017, 114, 96.
- 44D. E. V. Pires, T. L. Blundell, D. B. Ascher, J. Med. Chem. 2015, 58, 4066.
- 45J. Zaretzki, C. Bergeron, P. Rydberg, T. Huang, K. P. Bennett, C. M. Breneman, J. Chem. Inf. Model. 2011, 51, 1667.
- 46 New Zealand Medicines and Medical Devices Safety Authority, Prescriber Update 2014, 35, 4.
- 47Y. C. Chen, Trends Pharmacol. Sci. 2015, 36, 78.
- 48S. Riniker, G. A. Landrum, J. Cheminf. 2013, 5, 26.
- 49X. H. Liu, P. Cui, B. A. Song, P. S. Bhadury, H. L. Zhu, S. F. Wang, Bioorg. Med. Chem. 2008, 16, 4075.
- 50J. B. Patel, F. R. Cockerill III, P. A. Bradford, G. M. Eliopoulos, J. A. Hindler, S. G. Jenkins, J. S. Lewis II, B. Limbago, L. A. Miller, D. P. Nicolau, M. Powell, J. M. Swenson, M. M. Traczewski, J. D. Turnidge, M. P. Weinstein, B. L. Zimmer, Clinical Laboratory Standards Institute. 2015, 32(2), 187. https://clsi.org/media/1632/m07a10_sample.pdf
- 51P. Pathak, A. Thakur, H. R. Bhat, U. P. Singh, J. Heterocycl. Chem. 2015, 52, 1108.
- 52P. Prateek, A. Thakur, P. K. Shukla, Int. J. ChemTech Res. 2016, 9, 261.
- 53M. Sandasi, C. M. Leonard, A. M. Viljoen, Food Control 2008, 19, 1070.
- 54A. Kamal, S. M. A. Hussaini, M. L. Sucharitha, Y. Poornachandra, F. Sultana, C. G. Kumar, Org. Biomol. Chem. 2015, 13, 9388.
- 55A. Kamal, A. Rahim, S. Riyaz, Y. Poornachandra, M. Balakrishna, C. G. Kumar, S. M. A. Hussaini, B. Sridhar, P. K. Machiraju, Org. Biomol. Chem. 2015, 13, 1347.
- 56D. Djordjevic, M. Wiedmann, L. A. McLandsborough, Appl. Environ. Microbiol. 2002, 68, 2950.
- 57M. S. Osburne, W. M. Maiese, M. Greenstein, J. Antibiot. (Tokyo) 1993, 46, 1764.
- 58F. Blanche, B. Cameron, F. X. Bernard, L. Maton, B. Manse, L. Ferrero, N. Ratet, C. Lecoq, A. Goniot, D. Bisch, J. Crouzet, Antimicrob. Agents Chemother. 1996, 40, 2714.
- 59V. Potemkin, O. Galimova, M. Grishina, Drugs Future 2010, 35, 14.
- 60A. V. Potemkin, M. A. Grishina, V. A. Potemkin, Curr. Drug. Discov. Technol. 2017, 14, 181.
- 61V. Potemkin, M. Grishina, Curr. Med. Chem. 2018, 25, 3526.
- 62V. A. Potemkin, M. A. Grishina, J. Comput.-Aided. Mol. Des. 2008, 22, 489.
- 63V. Potemkin, M. Grishina, Drug Discov. Today 2008, 13, 952.
- 64P. Pathak, V. Naumovich, M. Grishina, P. K. Shukla, A. Verma, V. Potemkin, Arch. Pharm. (Weinheim) 2019, 352, 1.
- 65J. Novak, M. A. Grishina, V. A. Potemkin, J. Gasteiger, Future Med. Chem. 2020, 12, 299.
- 66J. Novak, M. A. Grishina, V. A. Potemkin, Future Med. Chem. 2020, 12, 1025.
- 67V. Potemkin, E. Bartashevich, A. Belik, J. Phys. Chem. A 1996, 70, 411.
- 68V. A. Potemkin, A. A. Pogrebnoy, M. A. Grishina, J. Chem. Inf. Model. 2009, 49, 1389.
- 69V. Potemkin, A. Potemkin, M. Grishina, Curr. Top. Med. Chem. 2019, 18, 1955.
- 70V. Potemkin, M. Grishina, 2018. www.cheosophia.com (accessed: October 2020).
- 71A. Daina, O. Michielin, V. Zoete, Sci. Rep. 2017, 7, 1.
- 72G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785.
- 73B. D. Bax, P. F. Chan, D. S. Eggleston, A. Fosberry, D. R. Gentry, F. Gorrec, I. Giordano, M. M. Hann, A. Hennessy, M. Hibbs, J. Huang, E. Jones, J. Jones, K. K. Brown, C. J. Lewis, E. W. May, M. R. Saunders, O. Singh, C. E. Spitzfaden, C. Shen, A. Shillings, A. J. Theobald, A. Wohlkonig, N. D. Pearson, M. N. Gwynn, Nature 2010, 466, 935.
- 74E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605.
- 75B. Webb, A. Sali, Curr. Protoc. Bioinf. 2016, 54, 54. https://doi.org/10.1002/cpbi.3
10.1002/cpbi.3 Google Scholar
- 76O. Trott, A. J. Olson, J. Comput. Chem. 2009, 31, 455.
- 77G. Landrum, RDKit: Open-source cheminformatics. 2006. https://www.rdkit.org/ (accessed: November 2020).
- 78D. Bajusz, A. Rácz, K. Héberger, J. Cheminf. 2015, 7, 20.
- 79D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, Nucleic Acids Res. 2018, 46, D1074.
- 80M. Davies, M. Nowotka, G. Papadatos, N. Dedman, A. Gaulton, F. Atkinson, L. Bellis, J. P. Overington, Nucleic Acids Res. 2015, 43, W612.