Design and synthesis of pyrazole–pyrazoline hybrids as cancer-associated selective COX-2 inhibitors
Wasim Akhtar
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorAkranth Marella
Fryer Global Regulatory Solutions and Services, Hyderabad, Telangana, India
Search for more papers by this authorMohammad Mumtaz Alam
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorMohemmed F. Khan
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorMymoona Akhtar
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorTariq Anwer
Department of Pharmacology, College of Pharmacy, Jazan University, Gizan, Saudi Arabia
Search for more papers by this authorFarah Khan
Department of Biochemistry, Jamia Hamdard, New Delhi, India
Search for more papers by this authorMd. Naematullah
Department of Biochemistry, Jamia Hamdard, New Delhi, India
Search for more papers by this authorFaizul Azam
Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
Search for more papers by this authorMoshahid A. Rizvi
The Genome Biology Lab, Jamia Millia Islamia, New Delhi, India
Search for more papers by this authorCorresponding Author
Mohammad Shaquiquzzaman
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Correspondence Mohammad Shaquiquzzaman, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (NIRF-2019), Jamia Hamdard, New Delhi 110062, India.
Email: [email protected] and [email protected]
Search for more papers by this authorWasim Akhtar
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorAkranth Marella
Fryer Global Regulatory Solutions and Services, Hyderabad, Telangana, India
Search for more papers by this authorMohammad Mumtaz Alam
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorMohemmed F. Khan
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorMymoona Akhtar
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Search for more papers by this authorTariq Anwer
Department of Pharmacology, College of Pharmacy, Jazan University, Gizan, Saudi Arabia
Search for more papers by this authorFarah Khan
Department of Biochemistry, Jamia Hamdard, New Delhi, India
Search for more papers by this authorMd. Naematullah
Department of Biochemistry, Jamia Hamdard, New Delhi, India
Search for more papers by this authorFaizul Azam
Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
Search for more papers by this authorMoshahid A. Rizvi
The Genome Biology Lab, Jamia Millia Islamia, New Delhi, India
Search for more papers by this authorCorresponding Author
Mohammad Shaquiquzzaman
Drug Design and Medicinal Chemistry Laboratory, Jamia Hamdard, New Delhi, India
Correspondence Mohammad Shaquiquzzaman, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (NIRF-2019), Jamia Hamdard, New Delhi 110062, India.
Email: [email protected] and [email protected]
Search for more papers by this authorAbstract
In continuation of our previous work on cancer and inflammation, 15 novel pyrazole–pyrazoline hybrids (WSPP1–15) were synthesized and fully characterized. The formation of the pyrazoline ring was confirmed by the appearance of three doublets of doublets in 1H nuclear magnetic resonance spectra exhibiting an AMX pattern for three protons (HA, HM, and HX) of the pyrazoline ring. All the synthesized compounds were screened for their in vitro anticancer activity against five cell lines, that is, MCF-7, A549, SiHa, COLO205, and HepG2 cells, using the MTT growth inhibition assay. 5-Fluorouracil was taken as the positive control in the study. It was observed that, among them, WSPP11 was found to be active against A549, SiHa, COLO205, and HepG2 cells, with IC50 values of 4.94, 4.54, 4.86, and 2.09 µM. All the derivatives were also evaluated for their cytotoxicity against HaCaT cells. WSPP11 was also found to be nontoxic against normal cells (cell line HaCaT), with an IC50 value of more than 50 µM. The derivatives were also evaluated for their in vitro anti-inflammatory activity by the protein (egg albumin) denaturation assay and the red blood cell membrane stabilizing assay, using diclofenac sodium and celecoxib as standard. Compounds that showed significant anticancer and anti-inflammatory activities were further studied for COX-2 inhibition. The manifestation of a higher COX-2 selectivity index of WSPP11 as compared with other derivatives and an in vitro anticancer activity against four cell lines further established that compounds that were more selective toward COX-2 also exhibited a better spectrum of activity against various cancer cell lines.
Supporting Information
Filename | Description |
---|---|
ardp202000116-sup-0001-Supplementary_Material.doc21.3 MB | Supporting information |
ardp202000116-sup-0002-ACD_File.doc68.5 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Piñeros, A. Znaor, F. Bray, Int. J. Cancer 2019, 144, 1941. https://doi.org/10.1002/ijc.31937
- 2R. L. Siegel, K. D. Miller, A. Jemal, CA Cancer J. Clin. 2019, 69, 7. https://doi.org/10.3322/caac.21551
- 3F. Balkwill, A. Mantovani, Lancet 2001, 357, 539. https://doi.org/10.1016/s0140-6736(00)04046-0
- 4A. Schmidt, O. F. Weber, Contrib. Microbiol. 2006, 13, 1.
- 5H. Maeda, T. Akaike, Biochemistry 1998, 63, 854.
- 6D. Il'yasova, L. H. Colbert, T. B. Harris, A. B. Newman, D. C. Bauer, S. Satterfield, S. B. Kritchevsky, Cancer Epidemiol., Biomarkers Prev. 2005, 14, 2413.
- 7J. Watson, C. Salisbury, J. Banks, P. Whiting, W. Hamilton, Br. J. Cancer 2019, 120, 1045. https://doi.org/10.1038/s41416-019-0458-x
- 8J. Claria, Curr. Pharm. 2003, 9, 2177.
- 9M. E. Turini, R. N. DuBois, Annu. Rev. Med. 2002, 53, 35. https://doi.org/10.1146/annurev.med.53.082901.103952
- 10N. G. Hashemi, M. Najafi, E. Salehi, B. Farhood, K. Mortezaee, J. Cell. Physiol. 2019, 234, 5683. https://doi.org/10.1002/jcp.27411
- 11R. A. Soslow, A. J. Dannenberg, D. Rush, B. M. Woerner, K. N. Khan, J. Masferer, A. T. Koki, Cancer 2000, 89, 2637. https://doi.org/10.1002/1097-0142(20001215)89:12<2637::aid-cncr17>3.0.co;2-b
10.1002/1097-0142(20001215)89:12<2637::AID-CNCR17>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 12T. Hida, Y. Yatabe, H. Achiwa, H. Muramatsu, K. Kozaki, S. Nakamura, M. Ogawa, T. Mitsudomi, T. Sugiura, T. Takahashi, Cancer Res. 1998, 58, 3761.
- 13T. J. Maier, K. Schilling, R. Schmidt, G. Geisslinger, S. Grösch, Biochem. Pharmacol. 2004, 67, 1469.
- 14C. S. Williams, W. Smalley, R. N. DuBois, J. Clin. Invest. 1997, 100, 1325.
- 15S. Kulkarni, J. S. Rader, F. Zhang, H. Liapis, A. T. Koki, J. L. Masferer, K. Subbaramaiah, A. J. Dannenberg, Clin. Cancer Res. 2001, 7, 429.
- 16E. M. Gedawy, A. E. Kassab, A. M. El Kerdawy, Eur. J. Med. Chem. 2020, 189, 112066. https://doi.org/10.1016/j.ejmech.2020.112066
- 17S. Shaikh, D. Pratik, P. Ganesh, M. M. V. Ramana, B. L. Jadhav, Bioorg. Chem. 2020, 96, 103589. https://doi.org/10.1016/j.bioorg.2020.103589
- 18S. Mert, Z. Alım, M. Mustafaİşgör, B. Anıl, R. Kasımoğulları, Ş. Beydemir, Arab. J. Chem. 2019, 12, 2740. https://doi.org/10.1016/j.arabjc.2015.05.020
- 19W. Yang, Y. Li, Y. Ai, O. N. Obianom, D. Guo, H. Yang, S. Sakamuru, M. Xia, Y. Shu, F. Xue, J. Med. Chem. 2019, 62, 11151. https://doi.org/10.1021/acs.jmedchem.9b01252
- 20A. M. Y. Moustafa, Am. J. Heterocycl. Chem. 2019, 5, 55. https://doi.org/10.11648/j.ajhc.20190503.12
- 21M. M. Anwar, S. S. A. El-Karim, A. H. Mahmoud, E. A. Abd El-Galil, M. A. Al-Omar, Molecules 2019, 24, 2413. https://doi.org/10.3390/molecules24132413
- 22T. Renjith, Y. Sheena, K. S. Resmi, B. Narayana, B. K. Sarojini, G. Vijaykumar, C. van Alsenoy, J. Mol. Struct. 2019, 1181, 455. https://doi.org/10.1016/j.molstruc.2019.01.003
- 23C. Monika, K. Neeraj, B. Ashish, C. Ramesh, B. M. Arockia, M. Jitender, J. Biomol. Struct. Dyn. 2020, 38, 200. https://doi.org/10.1080/07391102.2019.1578264
- 24S. Xuanrong, Z. Longchao, G. Mengshi, Q. Xiangjie, Z. Chenfeng, Z. Dabu, C. Yue, Molecules 2019, 24, 624. https://doi.org/10.3390/molecules24030624
- 25U. Jasmine, A. Ozair, M. J. Naim, N. Farah, M. J. Alam, A. K. Panda, M. A. Alam, D. Vinod, J. Pharm. Bioallied Sci. 2016, https://doi.org/10.4103/0975-7406.179425
- 26B. Insuasty, A. Tigreros, F. Orozco, J. Quiroga, R. Abonía, M. Nogueras, A. Sanchez, J. Cobo, Bioorg. Med. Chem. 2010, 18, 4965. https://doi.org/10.1016/j.bmc.2010.06.013
- 27A. L. Hsu, T. T. Ching, D. S. Wang, X. Song, V. M. Rangnekar, C. S. Chen, J. Biol. Chem. 2000, 275, 11397. https://doi.org/10.1074/jbc.275.15.11397
- 28C. S. Williams, A. J. Watson, H. Sheng, R. Helou, J. Shao, R. N. DuBois, Cancer Res 2000, 60, 6045.
- 29S. K. Kulp, Y. T. Yang, C. C. Hung, K. F. Chen, J. P. Lai, P. H. Tseng, J. W. Fowble, P. J. Ward, C. S. Chen, Cancer Res. 2004, 64, 1444. https://doi.org/10.1158/0008-5472.can-03-2396
- 30A. Marella, M. R. Ali, M. T. Alam, R. Saha, O. P. Tanwar, M. Akhter, M. Shaquiquzzaman, M. M. Alam, Mini-Rev. Med. Chem. 2013, 13, 921. https://doi.org/10.2174/1389557511313060012
- 31J. Ramirez-Prada, S. M. Robledo, I. D. Velez, M. D. P. Crespo, J. Quiroga, R. Abonia, A. Montoya, L. Svetaz, S. Zacchino, B. Insuasty, Eur. J. Med. Chem. 2017, 131, 237. https://doi.org/10.1016/j.ejmech.2017.03.016
- 32Y. S. Yang, B. Yang, Y. Zou, G. Li, H. L. Zhu, Bioorg. Med. Chem. 2016, 24, 3052. https://doi.org/10.1016/j.bmc.2016.05.012
- 33R. F. George, M. A. Fouad, I. E. O. Gomaa, Eur. J. Med. Chem. 2016, 112, 48. https://doi.org/10.1016/j.ejmech.2016.01.048
- 34M. D. Altintop, A. Ozdemir, G. Turan-Zitouni, S. Ilgin, O. Atli, R. Demirel, Z. A. Kaplancikli, Eur. J. Med. Chem. 2015, 92, 342. https://doi.org/10.1016/j.ejmech.2014.12.055
- 35Y. Minmin, Y. Hui, W. Kaihua, J. Ying, J. Lili, L. Xiaoyuan, Bioorg. Med. Chem. Lett. 2014, 22, 4109. https://doi.org/10.1016/j.bmc.2014.05.059
- 36E. A. Sausville, R. W. Stein, J. Peisach, S. B. Horwitz, Biochemistry 1978, 17, 2746.
- 37B. Sever, M. D. Altıntop, M. O. Radwan, A. Özdemir, M. Otsuka, M. Fujita, H. I. Ciftci, Eur. J. Med. Chem. 2019, 182, 111648.
- 38Z. Xu, S. J. Zhao, Y. Liu, Eur. J. Med. Chem. 2019, 183, 111700. https://doi.org/10.1016/j.ejmech.2019.111700
- 39E. Kucuksayan, T. Ozben, Curr. Top. Med. Chem. 2017, 17, 907.
- 40M. B. Smith, J. March, March's Advanced Organic Chemistry, 6th ed., John Wiley & Sons Inc., Hoboken, NJ 2007, pp. 724–725.
- 41N. C. Desai, V. V. Joshi, K. M. Rajpara, H. V. Vaghani, H. M. Satodiya, J. Fluorine Chem. 2012, 142, 67. https://doi.org/10.1016/j.jfluchem.2012.06.021
- 42A. Budakoti, M. Abid, A. Azam, Eur. J. Med. Chem. 2007, 42, 544. https://doi.org/10.1016/j.ejmech.2006.10.011
- 43T. Mosmann, J. Immunol. Methods 1983, 65, 55.
- 44I. Dhamija, N. Kumar, S. N. Manjula, V. Parihar, M. M. Setty, K. S. R. Pai, Exp. Toxicol. Pathol. 2013, 65, 235.
- 45Y. Mizushima, M. Kobayashi, J. Pharm. Pharmacol. 1968, 20, 169.
- 46N. Yerramsetty, K. Valluri, R. Shaik, Ramadosskarthikeyan, J. Acute Dis. 2013, 2, 156. https://doi.org/10.1016/s2221-6189(13)60118-3
10.1016/S2221-6189(13)60118-3 Google Scholar
- 47W. Akhtar, L. M. Nainwal, S. K. Kaushik, M. Akhtar, M. Shaquiquzzaman, F. Almalki, K. Saifullah, A. Marella, M. M. Alam, Arch. Pharm. 2020, 353, e1900333. https://doi.org/10.1002/ardp.201900333
- 48W. Akhtar, G. Verma, M. F. Khan, M. Shaquiquzzaman, A. Rana, T. Anwer, M. Akhter, M. M. Alam, Mini-Rev. Med. Chem. 2018, 18, 369. https://doi.org/10.2174/1389557517666170220153456
- 49M. J. Uddin, P. N. P. Rao, R. McDonald, E. E. Knaus, J. Med. Chem. 2004, 47, 6108.
- 50M. S. Hussain, F. Azam, K. F. Ahamed, V. Ravichandiran, I. Alkskas, Pharm. Biol. 2016, 54, 628.
- 51F. Azam, H. S. Abodabos, I. M. Taban, A. R. Rfieda, D. Mahmood, M. J. Anwar, S. Khan, N. Sizochenko, G. Poli, T. Tuccinardi, H. I. Ali, Mol. Simul. 2019, 45, 1563. https://doi.org/10.1080/08927022.2019.1662003
- 52F. Azam, N. Mohamed, F. Alhussen, Network 2015, 26, 97. https://doi.org/10.3109/0954898x.2016.1146416
- 53A. Marella, M. Shaquiquzzaman, M. Akhter, G. Verma, M. M. Alam, J. Enzyme Inhib. Med. Chem. 2015, 30, 597. https://doi.org/10.3109/14756366.2014.958081
- 54G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, J. Comput. Chem. 1998, 19, 1639.
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CAS Web of Science® Google Scholar
- 55F. Azam, M. V. V. Prasad, N. Thangavel, Med. Chem. 2012, 8, 1057. https://doi.org/10.2174/1573406411208061057