Studying the Synergistic Effects of Molecularly Imprinted Orthophenylenediamine and MXene/COOH-MWCNT Composite for Vitro Diagnosis of Bilirubin in Human Serum
Manoj
Applied Science Department, The NorthCap University, Gurugram, India
Contribution: Conceptualization (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Aditya Sharma Ghrera
Applied Science Department, The NorthCap University, Gurugram, India
Correspondence:
Aditya Sharma Ghrera ([email protected])
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorManoj
Applied Science Department, The NorthCap University, Gurugram, India
Contribution: Conceptualization (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Aditya Sharma Ghrera
Applied Science Department, The NorthCap University, Gurugram, India
Correspondence:
Aditya Sharma Ghrera ([email protected])
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorFunding: The authors received no specific funding for this work.
ABSTRACT
In this work, a molecularly imprinted sensor based on a composite of Ti3C2Tx (MXene) and carboxyl functionalized multiwall carbon nanotubes (COOH-MWCNT) is prepared for bilirubin (BR) detection in human serum. The surface morphology and structure of the synthesized composite are characterized via field emission scanning electron microscopy (FESEM) along with elemental dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). The formation of the BR imprint is confirmed via FESEM, atomic force microscopy (AFM), and electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectrometry (EIS) under optimized experimental parameters. The BR imprinted electrode is prepared on the MXene/COOH-MWCNT composite-modified electrode by using CV in 6 mM ortho-phenylenediamine (o-PD) containing 2 mM BR in sodium acetate buffer solution (pH 5, 0.1 M). The linear range, limit of detection (LOD) and sensitivity are calculated as 0.1–20 mg/dL, 0.002 mg/dL, and 11.7 μA μM−1 cm−2, respectively. In addition, selectivity, reusability, reproducibility, and stability studies are performed on the prepared electrode.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 A. R. Guerra Ruiz, J. Crespo, R. M. López Martínez, et al., “Measurement and Clinical Usefulness of Bilirubin in Liver Disease,” Advances in Laboratory Medicine/Avances en Medicina de Laboratorio 2, no. 3 (2021): 352–361, https://doi.org/10.1515/almed-2021-0047.
- 2
D. P. V. Puppalwar, “Review on ‘Evolution of Methods of Bilirubin Estimation,” IOSR Journal of Dental and Medical Sciences 1, no. 3 (2012): 17–28, https://doi.org/10.9790/0853-0131728.
10.9790/0853-0131728 Google Scholar
- 3 A. P. S. I. S. Kucherenko, O. O. Soldatkin, and S. V. Dzyadevych, “Electrochemical Biosensors Based on Multienzyme Systems: Main Groups, Advantages and Limitations – A Review,” Analytica Chimica Acta 1111 (2020): 114–131, https://doi.org/10.1016/j.aca.2020.03.034.
- 4 A. Sharma, Z. Matharu, G. Sumana, P. R. Solanki, C. G. Kim, and B. D. Malhotra, “Antibody Immobilized Cysteamine Functionalized-Gold Nanoparticles for Aflatoxin Detection,” Thin Solid Films 519, no. 3 (2010): 1213–1218, https://doi.org/10.1016/j.tsf.2010.08.071.
- 5 A. Sharma, C. M. Pandey, G. Sumana, et al., “Chitosan Encapsulated Quantum Dots Platform for Leukemia Detection,” Biosensors & Bioelectronics 38, no. 1 (2012): 107–113, https://doi.org/10.1016/j.bios.2012.05.010.
- 6 Y. Gupta, K. Kalpana, and A. S. Ghrera, “Electrochemical Studies of Lateral Flow Assay Test Results for Procalcitonin Detection,” Journal of Electrochemical Science and Engineering 12, no. 2 (2022): 265–274, https://doi.org/10.5599/jese.1127.
- 7 A. Sharma, C. M. Pandey, Z. Matharu, et al., “Nanopatterned Cadmium Selenide Langmuir–Blodgett Platform for Leukemia Detection,” Analytical Chemistry 84, no. 7 (2012): 3082–3089, https://doi.org/10.1021/ac202265a.
- 8 A. S. Ghrera, “Quantum Dot Modified Interface for Electrochemical Immunosensing of Procalcitonin for the Detection of Urinary Tract Infection,” Analytica Chimica Acta 1056 (2019): 26–33, https://doi.org/10.1016/j.aca.2018.12.047.
- 9 Y. Gupta, C. M. Pandey, and A. S. Ghrera, “Development of Conducting Cellulose Paper for Electrochemical Sensing of Procalcitonin,” Microchimica Acta 190, no. 1 (2023): 32, https://doi.org/10.1007/s00604-022-05596-9.
- 10 F. Parnianchi, S. Kashanian, M. Nazari, C. Santoro, P. Bollella, and K. Varmira, “Highly Selective and Sensitive Molecularly Imprinting Electrochemical Sensing Platform for Bilirubin Detection in Saliva,” Microchemical Journal 168 (2021): 106367, https://doi.org/10.1016/j.microc.2021.106367.
- 11 N. Çapar, İ. Polat, B. B. Yola, N. Atar, and M. L. Yola, “A Novel Molecular Imprinted QCM Sensor Based on MoS2NPs-MWCNT Nanocomposite for Zearalenone Determination,” Microchimica Acta 190, no. 7 (2023): 262, https://doi.org/10.1007/s00604-023-05842-8.
- 12 R. D. Crapnell, N. C. Dempsey-hibbert, M. Peeters, A. Tridente, and C. E. Banks, “Molecularly Imprinted Polymer Based Electrochemical Biosensors: Overcoming the Challenges of Detecting Vital Biomarkers and Speeding Up Diagnosis,” Talanta Open 2 (2020): 100018, https://doi.org/10.1016/j.talo.2020.100018.
- 13
Manoj and A. S. Ghrera, “Molecularly Imprinted Orthophenylenediamine With Ti3C2Tx MXene − Based Biosensor for Sensitive Detection of Bilirubin,” Polymers for Advanced Technologies 35, no. 3 (2024): 1–2, https://doi.org/10.1002/pat.6346.
10.1002/pat.6346 Google Scholar
- 14 Manoj and A. S. Ghrera, “Ti3C2Tx MXene Modified Indium Tin Oxide (ITO) Electrode for Electrochemical Sensing of Bilirubin Based on a Molecularly Imprinted Pyrrole Polymer,” Physica Scripta 99, no. 5 (2024): 055936, https://doi.org/10.1088/1402-4896/ad36f6.
- 15 T. Sajini and B. Mathew, “A Brief Overview of Molecularly Imprinted Polymers: Highlighting Computational Design, Nano and Photo-Responsive Imprinting,” Talanta Open 4 (2021): 100072, https://doi.org/10.1016/j.talo.2021.100072.
- 16 A. N. Hasanah, N. Safitri, A. Zulfa, N. Neli, and D. Rahayu, “Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials,” Molecules 26, no. 18 (2021): 5612, https://doi.org/10.3390/molecules26185612.
- 17 E. Buffon and N. R. Stradiotto, “Electrochemical Sensor Based on Molecularly Imprinted Poly(Ortho-Phenylenediamine) for Determination of Hexahydrofarnesol in Aviation Biokerosene,” Sensors and Actuators B: Chemical 287 (2019): 371–379, https://doi.org/10.1016/j.snb.2019.02.059.
- 18 D. Elfadil, F. Silveri, S. Palmieri, et al., “Liquid-Phase Exfoliated 2D Graphene Nanoflakes Electrochemical Sensor Coupled to Molecularly Imprinted Polymers for the Determination of Citrinin in Food,” Talanta 253 (2023): 124010, https://doi.org/10.1016/j.talanta.2022.124010.
- 19 J. Li, J. Zhao, and X. Wei, “A Sensitive and Selective Sensor for Dopamine Determination Based on a Molecularly Imprinted Electropolymer of O-Aminophenol,” Sensors and Actuators B: Chemical 140, no. 2 (2009): 663–669, https://doi.org/10.1016/j.snb.2009.04.067.
- 20 A. H. Omidvar, A. Amanati Shahri, A. L. C. Serrano, J. Gruber, and G. Pamplona Rehder, “A Highly Sensitive Molecularly Imprinted Polymer (MIP)-Coated Microwave Glucose Sensor,” Sensors 22, no. 22 (2022): 8648, https://doi.org/10.3390/s22228648.
- 21 Y. Chen, B. Liu, H. Lian, and X. Sun, “Preparation and Application of Urea Electrochemical Sensor Based on Chitosan Molecularly Imprinted Films,” Electroanalysis 23, no. 6 (2011): 1454–1461, https://doi.org/10.1002/elan.201000693.
- 22 P. S. Adarakatti and S. K. Kempahanumakkagari, “Modified Electrodes for Sensing,” SPR Electrochemistry 15 (2019): 58–95, https://doi.org/10.1039/9781788013895-00058.
- 23 R. H. AL-Ammari, A. A. Ganash, and M. A. Salam, “Electrochemical Molecularly Imprinted Polymer Based on Zinc Oxide/Graphene/Poly(O-Phenylenediamine) for 4-Chlorophenol Detection,” Synthetic Metals 254 (2019): 141–152, https://doi.org/10.1016/j.synthmet.2019.06.015.
- 24 W. Zheng, M. Zhao, W. Liu, et al., “Electrochemical Sensor Based on Molecularly Imprinted Polymer/Reduced Graphene Oxide Composite for Simultaneous Determination of Uric Acid and Tyrosine,” Journal of Electroanalytical Chemistry 813 (2018): 75–82, https://doi.org/10.1016/j.jelechem.2018.02.022.
- 25 V. Thotathil, N. Sidiq, J. S. Al Marri, and S. A. Zaidi, “Molecularly Imprinted Polymer-Based Sensors Integrated With Transition Metal Dichalcogenides (TMDs) and MXenes: A Review,” Critical Reviews in Analytical Chemistry 54 (2023): 1–26, https://doi.org/10.1080/10408347.2023.2298339.
- 26
K. Sharma, N. K. Puri, and B. Singh, “ Hexagonal Boron Nitride in Sensing and Biosensing Applications,” in Hexagonal Boron Nitride 4th ed. (Elsevier, 2024), 511–552, https://doi.org/10.1016/B978-0-443-18843-5.00004-5.
10.1016/B978-0-443-18843-5.00004-5 Google Scholar
- 27 Y. Gupta, C. M. Pandey, and A. S. Ghrera, “Reduced Graphene Oxide-Gold Nanoparticle Nanohybrid Modified Cost-Effective Paper-Based Biosensor for Procalcitonin Detection,” ChemistrySelect 7, no. 41 (2022): 1–16, https://doi.org/10.1002/slct.202202642.
- 28 A. S. Ghrera, C. M. Pandey, M. A. Ali, and B. D. Malhotra, “Quantum Dot-Based Microfluidic Biosensor for Cancer Detection,” Applied Physics Letters 106, no. 19 (2015): 1–6, https://doi.org/10.1063/1.4921203.
- 29 A. Sharma, G. Sumana, S. Sapra, and B. D. Malhotra, “Quantum Dots Self Assembly Based Interface for Blood Cancer Detection,” Langmuir 29, no. 27 (2013): 8753–8762, https://doi.org/10.1021/la401431q.
- 30 Y. Gupta and A. S. Ghrera, “Disposable Paper-Based Biosensing Platform for Procalcitonin Detection,” Analytical and Bioanalytical Chemistry Research 10, no. 1 (2023): 15–23, https://doi.org/10.22036/abcr.2022.340432.1761.
- 31 A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum Dot Monolayer for Surface Plasmon Resonance Signal Enhancement and DNA Hybridization Detection,” Biosensors & Bioelectronics 80 (2016): 477–482, https://doi.org/10.1016/j.bios.2016.02.013.
- 32 X. Wu, P. Ma, Y. Sun, F. Du, D. Song, and G. Xu, “Application of MXene in Electrochemical Sensors: A Review,” Electroanalysis 33, no. 8 (2021): 1827–1851, https://doi.org/10.1002/elan.202100192.
- 33 D. Chimene, D. L. Alge, and A. K. Gaharwar, “Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects,” Advanced Materials 27, no. 45 (2015): 7261–7284, https://doi.org/10.1002/adma.201502422.
- 34 A. Sinha, S. M. Dhanjai, J. C. Mugo, and K. S. Lokesh, “ MXene-Based Sensors and Biosensors: Next-Generation Detection Platforms,” in Handbook of Nanomaterials in Analytical Chemistry Modern Trends in Analysis (Elsevier, 2020), 361–372, https://doi.org/10.1016/B978-0-12-816699-4.00014-1.
- 35 M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna, and A. Pogrebnjak, “MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications,” Nanomaterials 11, no. 12 (2021): 3412, https://doi.org/10.3390/nano11123412.
- 36 X. Zhan, C. Si, J. Zhou, and Z. Sun, “MXene and MXene-Based Composites: Synthesis, Properties and Environment-Related Applications,” Nanoscale Horizons 5, no. 2 (2020): 235–258, https://doi.org/10.1039/C9NH00571D.
- 37 Y. Zhang, X. Jiang, J. Zhang, H. Zhang, and Y. Li, “Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid Using MXene Modified Screen-Printed Electrode,” Biosensors & Bioelectronics 130 (2019): 315–321, https://doi.org/10.1016/j.bios.2019.01.043.
- 38 B. Wang, Y. Li, H. Hu, W. Shu, L. Yang, and J. Zhang, “Acetylcholinesterase Electrochemical Biosensors With Graphene-Transition Metal Carbides Nanocomposites Modified for Detection of Organophosphate Pesticides,” PLoS One 15, no. 4 (2020): e0231981, https://doi.org/10.1371/journal.pone.0231981.
- 39 X. Ma, X. Tu, F. Gao, et al., “Hierarchical Porous MXene/Amino Carbon Nanotubes-Based Molecular Imprinting Sensor for Highly Sensitive and Selective Sensing of Fisetin,” Sensors and Actuators B: Chemical 309 (2020): 1–10, https://doi.org/10.1016/j.snb.2020.127815.
- 40 A. Singhal, S. Yadav, M. A. Sadique, et al., “MXene-Modified Molecularly Imprinted Polymers as an Artificial Bio-Recognition Platform for Efficient Electrochemical Sensing: Progress and Perspectives,” Physical Chemistry Chemical Physics 24, no. 32 (2022): 19164–19176, https://doi.org/10.1039/D2CP02330J.
- 41 F. Mohajer, G. M. Ziarani, A. Badiei, S. Iravani, and R. S. Varma, “MXene-Carbon Nanotube Composites: Properties and Applications,” Nanomaterials 13, no. 2 (2023): 345, https://doi.org/10.3390/nano13020345.
- 42 Y. Cai, J. Shen, G. Ge, et al., “Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor With Ultrahigh Sensitivity and Tunable Sensing Range,” ACS Nano 12, no. 1 (2018): 56–62, https://doi.org/10.1021/acsnano.7b06251.
- 43 R. Huang, S. Chen, J. Yu, and X. Jiang, “Self-Assembled Ti3C2/MWCNTs Nanocomposites Modified Glassy Carbon Electrode for Electrochemical Simultaneous Detection of Hydroquinone and Catechol,” Ecotoxicology and Environmental Safety 184 (2019): 109619, https://doi.org/10.1016/j.ecoenv.2019.109619.
- 44 M. Gao, Y. Xie, W. Yang, and L. Lu, “Fabrication of Novel Electrochemical Sensor Based on MXene/MWCNTs Composite for Sensitive Detection of Synephrine,” International Journal of Electrochemical Science 15, no. 5 (2020): 4619–4630, https://doi.org/10.20964/2020.05.79.
- 45 C. E. Shuck, A. Sarycheva, M. Anayee, et al., “Scalable Synthesis of Ti3C2Tx MXene,” Advanced Engineering Materials 22, no. 3 (2020): 1901241, https://doi.org/10.1002/adem.201901241.
- 46 I. F. Abo-elmagd, A. M. Mahmoud, M. A. Al-Ghobashy, et al., “Impedimetric Sensors for Cyclocreatine Phosphate Determination in Plasma Based on Electropolymerized Poly (O-Phenylenediamine) Molecularly Imprinted Polymers,” ACS Omega 6 (2021): 31282–31291, https://doi.org/10.1021/acsomega.1c05098.
- 47
K. Ladi and A. Sharma Ghrera, “Development of Electrode by Using Gold-Platinum Alloy Nanopar¬Ticles for Electrochemical Detection of Serum Amyloid A Protein,” Journal of Electrochemical Science and Engineering 14, no. 3 (2024): 339–352, https://doi.org/10.5599/jese.2036.
10.5599/jese.2036 Google Scholar
- 48 S. Ren, R. Feng, S. Cheng, Q. Wang, and Z. Zheng, “Synergistic Catalytic Acceleration of MXene/MWCNTs as Decorating Materials for Ultrasensitive Detection of Morphine,” Electroanalysis 33, no. 6 (2021): 1471–1483, https://doi.org/10.1002/elan.202100039.
- 49 M. Thangamuthu, W. Gabriel, C. Santschi, and O. Martin, “Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized With Carbon Nanotubes and Graphene,” Sensors 18, no. 3 (2018): 800, https://doi.org/10.3390/s18030800.
- 50 A. S. Ghrera, C. M. Pandey, and B. D. Malhotra, “Multiwalled Carbon Nanotube Modified Microfluidic-Based Biosensor Chip for Nucleic Acid Detection,” Sensors and Actuators B: Chemical 266 (2018): 329–336, https://doi.org/10.1016/j.snb.2018.03.118.
- 51 S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical Impedance Spectroscopy,” Nature Reviews Methods Primers 1, no. 1 (2021): 41, https://doi.org/10.1038/s43586-021-00039-w.
- 52 M. Zhang, Y. Yang, Y. Wang, et al., “A Molecularly Imprinted Electrochemical Sensor Based on Cationic Intercalated Two-Dimensional Titanium Carbide Nanosheets for Sensitive and Selective Detection of Triclosan in Food Samples,” Food Control 132 (2022): 108532, https://doi.org/10.1016/j.foodcont.2021.108532.
- 53 M. Marć and P. P. Wieczorek, “ Introduction to MIP Synthesis, Characteristics and Analytical Application,” in Comprehensive Analytical Chemistry, Advances in Catalysis, vol. 64 (Amsterdam, The Netherlands: Elsevier B.V, 2019), 1–15, https://doi.org/10.1016/bs.coac.2019.05.010.
- 54 D. Wu, H. Li, X. Xue, H. Fan, Q. Xin, and Q. Wei, “Sensitive and Selective Determination of Dopamine by Electrochemical Sensor Based on Molecularly Imprinted Electropolymerization of O-Phenylenediamine,” Analytical Methods 5, no. 6 (2013): 1469, https://doi.org/10.1039/c3ay26200f.
- 55 R. Lorenzo, A. Carro, C. Alvarez-Lorenzo, and A. Concheiro, “To Remove or Not to Remove? The Challenge of Extracting the Template to Make the Cavities Available in Molecularly Imprinted Polymers (MIPs),” International Journal of Molecular Sciences 12, no. 7 (2011): 4327–4347, https://doi.org/10.3390/ijms12074327.
- 56
M. Pirzada and Z. Altintas, “ Template Removal in Molecular Imprinting: Principles, Strategies, and Challenges,” in Molecular Imprinting for Nanosensors and Other Sensing Applications (Amsterdam, The Netherlands: Elsevier, 2021), 367–406, https://doi.org/10.1016/B978-0-12-822117-4.00014-9.
10.1016/B978-0-12-822117-4.00014-9 Google Scholar
- 57 N. Shaabani, N. W. C. Chan, W. E. Lee, and A. B. Jemere, “Electrochemical Determination of Naloxone Using Molecularly Imprinted Poly(Para-Phenylenediamine) Sensor,” Journal of the Electrochemical Society 167, no. 13 (2020): 137508, https://doi.org/10.1149/1945-7111/abbb0d.
- 58
J. Klemm, M. I. Prodromidis, and M. I. Karayannis, “An Enzymic Method for the Determination of Bilirubin Using an Oxygen Electrode,” Electroanalysis 12, no. 4 (2000): 292–295, https://doi.org/10.1002/(SICI)1521-4109(20000301)12:4<292::AID-ELAN292>3.0.CO;2-3.
10.1002/(SICI)1521-4109(20000301)12:4<292::AID-ELAN292>3.0.CO;2-3 CAS Web of Science® Google Scholar
- 59 T. Balamurugan and S. Berchmans, “Non-Enzymatic Detection of Bilirubin Based on a Graphene–Polystyrene Sulfonate Composite,” RSC Advances 5, no. 62 (2015): 50470–50477, https://doi.org/10.1039/C5RA06681F.
- 60 Z. Yang and C. Zhang, “Molecularly Imprinted Hydroxyapatite Thin Film for Bilirubin Recognition,” Biosensors & Bioelectronics 29, no. 1 (2011): 167–171, https://doi.org/10.1016/j.bios.2011.08.012.
- 61 J. G. Bell, M. P. S. Mousavi, M. K. Abd El-Rahman, E. K. W. Tan, S. Homer-Vanniasinkam, and G. M. Whitesides, “Paper-Based Potentiometric Sensing of Free Bilirubin in Blood Serum,” Biosensors & Bioelectronics 126 (2019): 115–121, https://doi.org/10.1016/j.bios.2018.10.055.
- 62 R. Rawal, N. Chauhan, M. Tomar, and V. Gupta, “A Contrivance Based on Electrochemical Integration of Graphene Oxide Nanoparticles/Nickel Nanoparticles for Bilirubin Biosensing,” Biochemical Engineering Journal 125 (2017): 238–245, https://doi.org/10.1016/j.bej.2017.06.006.
- 63 Q. Wang, X. Xiao, X. Hu, L. Huang, T. Li, and M. Yang, “Molecularly Imprinted Electrochemical Sensor for Ascorbic Acid Determination Based on MXene Modified Electrode,” Materials Letters 285 (2021): 129158, https://doi.org/10.1016/j.matlet.2020.129158.
- 64 M. L. Yola, C. Göde, and N. Atar, “Molecular Imprinting Polymer With Polyoxometalate/Carbon Nitride Nanotubes for Electrochemical Recognition of Bilirubin,” Electrochimica Acta 246 (2017): 135–140, https://doi.org/10.1016/j.electacta.2017.06.053.