The effect of NaY-zeolite on mechanical, thermal, and spectroscopic behavior of crosslinked polyvinyl alcohol films
Corresponding Author
Altan Bozdoğan
Faculty of Science and Letters, Department of Physics, Yıldız Technical University, Esenler, Türkiye
Correspondence
Altan Bozdoğan, Faculty of Science and Letters, Department of Physics, Yıldız Technical University, Davutpasa Campus, 34210, Esenler, İstanbul, Türkiye.
Email: [email protected]
Contribution: Data curation (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Methodology (lead), Resources (lead), Supervision (lead), Validation (lead), Visualization (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Altan Bozdoğan
Faculty of Science and Letters, Department of Physics, Yıldız Technical University, Esenler, Türkiye
Correspondence
Altan Bozdoğan, Faculty of Science and Letters, Department of Physics, Yıldız Technical University, Davutpasa Campus, 34210, Esenler, İstanbul, Türkiye.
Email: [email protected]
Contribution: Data curation (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Methodology (lead), Resources (lead), Supervision (lead), Validation (lead), Visualization (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
The effects of sodium y zeolite (NaY-zeolite) on crosslinked Polyvinyl alcohol (CrPVA) composite films were investigated. The spectroscopic analysis showed that crosslinks were formed between PVA, Tartaric acid (TA), and NaY-zeolite particles. The thermal stability of the CrPVA film was improved with the addition of zeolite. Optimum thermal stability was observed for 5 wt % zeolite content. It can be seen that the mechanical properties also improved for 5 wt % zeolite-doped CrPVA composite films when compared with CrPVA. It was observed that Young's modulus increased 54.14 to 74.49 MPa. While the degree of crystallinity of the composite film decreased from 20.42 to 14.77% due to zeolite content. This is thought to be due to the increase in the structure's crosslinking rate. The utilization of TA and NaY zeolite in membrane applications may be considered an advantage for improving the mechanical characteristics and the recyclability of membrane technology.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Q. Dong, J. Liu, C. Yao, G. Shao, J. Appl. Polym. Sci. 2011, 122, 1350.
- 2E. Ruckenstein, L. Liang, J. Membr. Sci. 1996, 110, 99.
- 3D. Thomas, P. Cebe, J. Therm. Anal. Calorim. 2017, 127, 885.
- 4S. Chaudhari, Y. Kwon, M. Moon, M. Shon, S. Nam, Y. Park, J. Appl. Polym. Sci. 2017, 134, 45572.
- 5M. Dmitrenko, A. Penkova, A. Kuzminova, A. Missyul, S. Ermakov, D. Roizard, Polymers 2018, 10, 571.
- 6M. C. Burshe, S. B. Sawant, J. B. Joshi, V. G. Pangarkar, Sep. Purif. Technol. 1997, 12, 145.
- 7C. K. Yeom, K. H. Lee, J. Membr. Sci. 1996, 109, 257.
- 8V. P. Swapna, S. P. Thomas, T. Jose, G. Moni, S. C. George, S. Thomas, R. Stephen, J. Mater. Sci. 2019, 54, 8319.
- 9X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules 2010, 43, 2357.
- 10S. P. Kusumocahyo, K. Sano, M. Sudoh, M. Kensaka, Sep. Purif. Technol. 2000, 18, 141.
- 11Y. Kwon, S. Chaudhari, C. Kim, D. H. Son, J. H. Park, M. J. Moon, M. Y. Shon, Y. I. Park, S. E. Nam, RSC Adv. 2018, 8, 20669.
- 12V. S. Praptowidodo, J. Mol. Struct. 2005, 739, 207.
- 13C. Chen, D. W. Park, W. S. Ahn, Appl. Surf. Sci. 2014, 292, 63.
- 14R. Krishna, J. M. Baten, J. Membr. Sci. 2010, 360, 323.
- 15Z. Dai, S. Liu, H. Ju, Electrochim. Acta 2004, 49, 2139.
- 16Z. Huang, H. M. Guan, W. L. Tan, X. Y. Qiao, S. Kulprathipanja, J. Membr. Sci. 2006, 276, 260.
- 17S. S. Kulkarni, S. M. Tambe, A. A. Kittur, M. Y. Kariduraganavar, J. Membr. Sci. 2006, 285, 420.
- 18A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. L. Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, J. Gascon, Adv. Funct. Mater. 2016, 26, 3154.
- 19P. D. Chapman, T. Oliveira, A. G. Livingston, K. Li, J. Membr. Sci. 2008, 318, 5.
- 20R. Ryan, in Surface and Nanomolecular Catalysis (Ed: R. Richards), CRC Press, Boca Raton 2006. https://doi.org/10.1201/9781420015751
- 21S. Khoonsap, S. Amnuaypanich, J. Membr. Sci. 2011, 367, 182.
- 22S. G. Adoor, M. Sairam, L. S. Manjeshwar, K. V. S. N. Raju, T. M. Aminabhavi, J. Membr. Sci. 2006, 285, 182.
- 23R. Castro-Muñoz, J. Buera-González, Ó. Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, J. Membr. Sci. 2019, 582, 423.
- 24J. G. Varghese, A. A. Kittur, M. Y. Kariduraganavar, J. Appl. Polym. Sci. 2009, 111, 2408.
- 25Z. Wang, I. Kumakiri, K. Tanaka, X. Chen, H. Kita, Microporous Mesoporous Mater. 2013, 182, 250.
- 26L. Zhao, Y. Chen, B. Wang, C. Sun, S. Chakraborty, K. Ramasubramanian, P. K. Dutta, W. S. W. Ho, J. Membr. Sci. 2016, 498, 1.
- 27S. S. Kulkarni, A. A. Kittur, M. Y. Kariduraganavar, F. J. Davis, J. Appl. Polym. Sci. 2008, 109, 2043.
- 28H. G. Premakshi, K. Ramesh, M. Y. Kariduraganavar, Chem. Eng. Res. Des. 2015, 94, 32.
- 29F. Kurşun, J. Mol. Struct. 2020, 1201, 127170.
- 30M. Ulbricht, Polymer 2006, 47, 2217.
- 31X. Wang, D. Fang, K. Yoon, B. S. Hsiao, B. Chu, J. Membr. Sci. 2006, 278, 261.
- 32A. Bozdoğan, B. Aksakal, C. Denktaş, Y. Salt, J. Appl. Polym. Sci. 2020, 137, 49421.
- 33X. Yang, L. Li, S. Shang, X. Tao, Polymer 2010, 51, 3431.
- 34Y. Yang, C. Liu, H. Wu, Polym. Test. 2009, 28, 371.
- 35Y. Park, M. You, J. Shin, S. Ha, D. Kim, M. H. Heo, J. Nah, Y. A. Kim, J. H. Seol, Sci. Rep. 2019, 9, 1.
- 36A. A. Kittur, S. S. Kulkarni, M. I. Aralaguppi, M. Y. Kariduraganavar, J. Membr. Sci. 2005, 247, 75.
- 37C. Bao, Y. Guo, L. Song, Y. Hu, J. Mater. Chem. 2011, 21, 13942.
- 38A. A. Kittur, M. Y. Kariduraganavar, U. S. Toti, K. Ramesh, T. M. Aminabhavi, J. Appl. Polym. Sci. 2003, 90, 2441.
- 39H. H. Perkampus, L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall Ltd., London 1976. https://doi.org/10.1002/bbpc.19760800121
- 40A. Ebadi Amooghin, M. Omidkhah, A. Kargari, RSC Adv. 2015, 5, 8552.
- 41H. Hassan, B. H. Hameed, Desalination 2011, 276, 45.
- 42G. Li, E. Kikuchi, M. Matsukata, Sep. Purif. Technol. 2003, 32, 199.
- 43K. Deshmukh, J. Ahmad, M. B. Hägg, Ionics 2014, 20, 957.
- 44Y. Zhang, K. J. Balkus, I. H. Musselman, J. P. Ferraris, J. Membr. Sci. 2008, 325, 28.
- 45D. Sun, P. Yang, H. L. Sun, B. B. Li, Eur. Polym. J. 2015, 62, 155.
- 46I. Honma, O. Nishikawa, T. Sugimoto, S. Nomura, H. Nakajima, Fuel Cells 2002, 2, 52.
- 47D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, J. Membr. Sci. 2004, 240, 37.
- 48Y. Guan, L. Shao, D. Dong, F. Wang, Y. Zhang, Y. Wang, RSC Adv. 2016, 6, 69966.
- 49B. P. Tripathi, T. Chakrabarty, V. K. Shahi, J. Mater. Chem. 2010, 20, 8036.
- 50H. Mao, H. G. Zhen, A. Ahmad, S. H. Li, Y. Liang, J. F. Ding, Y. Wu, L. Z. Li, Z. P. Zhao, J. Membr. Sci. 2019, 582, 307.
- 51I. F. J. Vankelecom, E. Scheppers, R. Heus, J. B. Uytterhoeven, J. Phys. Chem. 1994, 98, 12390.