Surface modification of polylactide films and their hydrolytic degradation performances in artificial seawater
Corresponding Author
Lihui Yao
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Correspondence
Lihui Yao and Dan Qiu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
Email: [email protected] and [email protected]
Yunxuan Weng, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
Email: [email protected]
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorYuzhu Li
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Data curation (lead), Formal analysis (equal)
Search for more papers by this authorYa Li
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorYajuan Wang
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorLinghui Wang
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Dan Qiu
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Correspondence
Lihui Yao and Dan Qiu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
Email: [email protected] and [email protected]
Yunxuan Weng, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
Email: [email protected]
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Yunxuan Weng
Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, China
Correspondence
Lihui Yao and Dan Qiu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
Email: [email protected] and [email protected]
Yunxuan Weng, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
Email: [email protected]
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Lihui Yao
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Correspondence
Lihui Yao and Dan Qiu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
Email: [email protected] and [email protected]
Yunxuan Weng, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
Email: [email protected]
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorYuzhu Li
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Data curation (lead), Formal analysis (equal)
Search for more papers by this authorYa Li
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorYajuan Wang
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorLinghui Wang
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Dan Qiu
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
Correspondence
Lihui Yao and Dan Qiu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
Email: [email protected] and [email protected]
Yunxuan Weng, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
Email: [email protected]
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Yunxuan Weng
Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, China
Correspondence
Lihui Yao and Dan Qiu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
Email: [email protected] and [email protected]
Yunxuan Weng, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
Email: [email protected]
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorAbstract
Benzophenone (BP) and N-vinylpyrrolidone (NVP) were used to modify the surface of polylactide (PLA) films by UV grafting method. The effects of light distance, temperature, reaction time, and modifier concentration on the structure and properties of PLA films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy, differential scanning calorimetry (DSC), and universal testing machine (UTM). With BP and NVP UV grafting, the hydrophilicity of PLA films is improved, but their thermal and mechanical properties are reduced under different surface modification condition. Base on the principle of good surface hydrophilicity, better mechanical and thermal properties, the hydrolytic degradation performance of modified PLA films in artificial seawater at 70°C was studied by scanning electron microscopy, XPS and DSC. The research results show that the degradation of modified PLA films mainly occurs in the amorphous region, and the degradation process conforms to surface hydrolysis mechanism. The grafting modification of NVP is better than BP to accelerate the degradation process of PLA films in artificial seawater. The degradation of modified PLA undergoes water molecule erosion and autocatalytic degradation reaction. The degradation of BP-PLA obeys the first-order kinetics in part, while the degradation of NVP-PLA is more complex. Therefore, surface hydrophilicity modification is an effective technique for improving the degradability of PLA.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
app55999-sup-0001-FigureS1.docxWord 2007 document , 1.2 MB | Figure S1. HNMR spectra of PLA, BP-PLA (0.2 mol/L BP solvent, 25°C, 20 min) and NVP-PLA (0.2 mol/L BP and 0.5 mol/L NVP solvent, 25°C, 20 min). Figure S2. Effect of different UV light distance on hydrophilicity and O or N + O total content of PLA films ((a) BP-PLA, (b) NVP-PLA). Figure S3. Effect of different UV light distance on mechanical properties of PLA films ((a) BP-PLA, (b) NVP-PLA). Figure S4. Effect of different temperature on hydrophilicity and O or N + O total content of PLA films ((a) BP-PLA, (b) NVP-PLA). Figure S5. Effect of different temperature on mechanical properties of PLA films ((a) BP-PLA, (b) NVP-PLA). Figure S6. Effect of different reaction time on hydrophilicity and O content of BP-PLA films. Figure S7. Effect of different reaction time on mechanical properties of BP-PLA films. Figure S8. BP grafting ratio of BP-PLA films at different reaction time. Figure S9. SEM micrographs of PLA, BP-PLA, and NVP-PLA films. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. P. Gupta, V. Kumar, Eur. Polym. J. 2007, 43, 4053.
- 2K. M. Nampoothiri, N. R. Nair, R. P. John, Bioresour. Technol. 2010, 101, 8493.
- 3N. A. Rosli, M. Karamanlioglu, H. Kargarzadeh, I. Ahmad, Int. J. Biol. Macromol. 2021, 187, 732.
- 4S. Nanda, B. R. Patra, R. Patel, J. Bakos, A. K. Dalai, Environ. Chem. Lett. 2022, 20, 379.
- 5R. T. Martin, L. P. Camargo, S. A. Miller, Green Chem. 2014, 16, 1768.
- 6A. R. Bagheri, C. Laforsch, A. Greiner, S. Agarwal, Global Chall. 2017, 1, 1700048.
- 7O. Menezes, T. Roberts, G. Motta, M.-H. Patrenos, W. McCurdy, A. Alotaibi, M. Vanderpool, M. Vaseghi, A. Beheshti, K. Davami, Polym. Degrad. Stab. 2022, 199, 109903.
- 8N. M. Ainali, D. Kalaronis, E. Evgenidou, G. Z. Kyzas, D. C. Bobori, M. Kaloyianni, X. Yang, D. N. Bikiaris, D. A. Lambropoulou, Sci. Total Environ. 2022, 832, 155014.
- 9W. Ali, H. Ali, S. Gillani, P. Zinck, S. Souissi, Environ. Chem. Lett. 2023, 21, 1761.
- 10A. Bher, Y. Cho, R. Auras, Macromol. Rapid. Commun. 2023, 44, 2200769.
- 11S. Wang, W. Cui, J. Bei, Anal. Bioanal. Chem. 2005, 381, 547.
- 12R. M. Rasal, A. V. Janorkar, D. E. Hirt, Prog. Polym. Sci. 2010, 35, 338.
- 13T. Standau, C. Zhao, S. M. Castellón, C. Bonten, V. Altstädt, Polymer 2019, 11, 306.
10.3390/polym11020306 Google Scholar
- 14U. Edlund, M. Källrot, A.-C. Albertsson, J. Am. Chem. Soc. 2005, 127, 8865.
- 15G.-H. Koo, J. Jang, Fibers Polym. 2008, 9, 674.
- 16E. Třesohlavá, S. Popelka, L. Machová, F. Rypáček, Biomacromolecules 2010, 11, 68.
- 17P. Rytlewski, W. Mroz, M. Żenkiewicz, J. Czwartos, B. Budner, J. Mater. Process. Technol. 2012, 212, 1700.
- 18K. Moraczewski, P. Rytlewski, R. Malinowski, M. Żenkiewicza, Appl. Surf. Sci. 2015, 346, 11.
- 19J.-X. Wang, Y.-B. Huang, W.-T. Yang, J. Polym. Sci. 2020, 38, 137.
- 20B. Shavkuta, K. Bardakova, Y. Khristidis, N. V. Minaev, A. Frolova, S. Kotova, N. Aksenova, Z. Heydari, E. Semenova, T. Khlebnikova, E. N. Golubeva, S. Kostjuk, M. Vosough, P. S. Timashev, A. I. Shpichka, Mol. Syst. Des. Eng. 2021, 6, 202.
- 21A. Södergărd, J.-F. Selinb, J. H. Näman, Polym. Degrad. Stab. 1996, 51, 351.
- 22A. V. Janorkar, A. T. Metters, D. E. Hirt, Macromolecules 2004, 37, 9151.
- 23A. Höglund, M. Hakkarainen, U. Edlund, A.-C. Albertsson, Langmuir 2010, 26, 378.
- 24K. Yu, X. Tan, Y. Hu, F. Chen, S. Li, Corros. Sci. 2011, 53, 2035.
- 25S. Barrau, C. Vanmansart, M. Moreau, A. Addad, G. Stoclet, J.-M. Lefebvre, R. Seguela, Macromolecules 2011, 44, 6496.
- 26H. Ma, R. H. Davis, C. N. Bowman, Macromolecules 2000, 33, 331.
- 27M. H. Gutierrez-Villarreal, M. G. Ulloa-Hinojosa, J. G. Gaona-Lozano, J. Appl. Polym. Sci. 2008, 110, 163.
- 28L. J. Johnston, D. J. Lougnot, V. Wintgens, J. C. Scaiano, J. Am. Chem. Soc. 1988, 110, 518.
- 29M. H. Gutierrez-Villarreal, F. J. Rodríguez-Gonzalez, Y. Perera-Mercado, Macromol. Symp. 2017, 374, 1600130.
- 30E. Castro-Aguirre, F. Iniguez-Franco, H. Samsudin, X. Fang, R. Auras, Adv. Drug Delivery Rev. 2016, 107, 333.
- 31L. Liu, C. Yan, W. Zhang, Y. Xu, M. Xu, Y. Hong, Y. Qiu, B. Li, J. Appl. Polym. Sci. 2023, 140, e53347.
- 32L. Feng, C. Cui, Z. Li, M. Zhang, S. Gao, Q. Zhang, Y. Wu, Z. Ge, Y. Cheng, Y. Zhang, Chin. J. Chem. 2022, 40, 2801.
- 33S. E. Atalay, B. Bezci, B. Özdemir, Y. A. Göksu, A. Ghanbari, A. Jalali, M. Nofar, J. Polym. Environ. 2021, 29, 3412.
- 34F. Zahidova, S. Yildiz, A. Özdemir, M. Gülfen, G. P. Yemiş, Int. J. Biol. Macromol. 2023, 241, 124583.
- 35J. H. Trivedi, H. A. Joshi, H. C. Trivedi, Macromol. Symp. 2021, 398, 2000227.
- 36Y. Li, L. Yao, Y. Li, Y. Wang, L. Wang, Z. Jiang, D. Qiu, Y. Weng, Chem. Pap. 2022, 76, 5929.
- 37M. Shin, H. Kim, S. Kim, H. J. Kim, D. X. Oh, J. Park, Polym. Test. 2024, 132, 108357.
- 38A. A. Pérez-Fonseca, D. Rodrigue, A. S. Martín del Campo, J. R. Robledo-Ortíz, Polylactic Acid Composites, De Gruyter, Berlin, Germany 2024. Chapter 2.
- 39Y.-C. Zhang, D.-Y. Zhu, S.-N. Xu, Sci. Tech. Eng. 2009, 9, 3595.
- 40S.-H. Woo, J.-W. Wee, Polym. Degrad. Stab. 2024, 223, 110726.
- 41N. Shekhar, A. Mondal, Polym. Bull. 2024, 1. https://doi.org/10.1007/s00289-024-05252-7
10.1007/s00289-024-05252-7 Google Scholar
- 42V. Gavande, Y. Kwon, N. P. Sapkal, W.-K. Lee, Mol. Cryst. Liq. Cryst. 2024, 110726. https://doi.org/10.1080/15421406.2024.2353951
10.1080/15421406.2024.2353951 Google Scholar