Shungite/poly(vinyl alcohol) hybrid hydrogels: An efficient adsorption material for rare earth metals in aqueous media
Viktoriia Kyshkarova
Institute of Geotechnics Slovak Academy of Sciences, Košice, Slovak Republic
Faculty of Materials, Metallurgy and Recycling of the Technical University of Košice, Košice, Slovak Republic
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (equal)
Search for more papers by this authorDominika Marcin Behunova
Institute of Geotechnics Slovak Academy of Sciences, Košice, Slovak Republic
Contribution: Data curation (equal), Methodology (equal), Resources (supporting)
Search for more papers by this authorInna Melnyk
Institute of Geotechnics Slovak Academy of Sciences, Košice, Slovak Republic
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Funding acquisition (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Seda Demirel Topel
Faculty of Engineering and Natural Sciences, Department of Electrical & Electronics Engineering, Antalya Bilim University, Antalya, Turkey
Correspondence
Seda Demirel Topel, Faculty of Engineering and Natural Sciences, Department of Electrical & Electronics Engineering, Antalya Bilim University, Antalya, Turkey.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Methodology (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorViktoriia Kyshkarova
Institute of Geotechnics Slovak Academy of Sciences, Košice, Slovak Republic
Faculty of Materials, Metallurgy and Recycling of the Technical University of Košice, Košice, Slovak Republic
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (equal)
Search for more papers by this authorDominika Marcin Behunova
Institute of Geotechnics Slovak Academy of Sciences, Košice, Slovak Republic
Contribution: Data curation (equal), Methodology (equal), Resources (supporting)
Search for more papers by this authorInna Melnyk
Institute of Geotechnics Slovak Academy of Sciences, Košice, Slovak Republic
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Funding acquisition (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Seda Demirel Topel
Faculty of Engineering and Natural Sciences, Department of Electrical & Electronics Engineering, Antalya Bilim University, Antalya, Turkey
Correspondence
Seda Demirel Topel, Faculty of Engineering and Natural Sciences, Department of Electrical & Electronics Engineering, Antalya Bilim University, Antalya, Turkey.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Methodology (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Rare earth elements play a pivotal role in modern technologies, thereby driving an escalating demand for their procurement. To effectively extract these elements from aqueous solutions, it is imperative to explore innovative sorbent materials. In this context, a hydrogel sorbent material was developed by employing poly(vinyl alcohol) (PVA) and shungite—an economical, naturally occurring, easily processable, and sustainable material. This was achieved through the freezing–thawing method, employing sodium borate as a crosslinking agent. The physicochemical characteristics of the hydrogels were determined through scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) analysis, Zetasizer analysis, and elemental analysis. The shungite-incorporated PVA hydrogels displayed notable characteristics, including a substantial swelling capacity of 61% and a specific surface area of 32.8 m2/g. Most significantly, these hydrogels exhibited a remarkable affinity for La3+ ions, with an uptake ratio of 134 mg/g. This was followed by Nd3+, Dy3+, and Er3+ ions, which displayed uptake ratios of 79, 74, and 73 mg/g, respectively.
Open Research
DATA AVAILABILITY STATEMENT
Data can be provided upon request from the corresponding author.
Supporting Information
Filename | Description |
---|---|
app55001-sup-0001-Supinfo.docxWord 2007 document , 546.3 KB | Table S1. Chemical composition of shungite mineral Table S2. Element analysis of the samples (CHNS analysis was performed by elementary analyzer Vario MACRO cube (Elementar Analysensysteme GmbH, Germany). Figure S1. SEM images (a–c), elemental analysis on SEM (d), color mapping by SEM-EDX (e–k) of shungite mineral Figure S2. SEM-EDX analysis of the surface of the shungite/PVA hydrogel after the La3+ (a), Nd3+ (b), Dy3+ (c) and Er3+ (d) cations adsorption. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1M. A. de Boer, K. Lammertsma, ChemSusChem 2013, 6, 2045. https://doi.org/10.1002/cssc.201200794.
10.1002/cssc.201200794 Google Scholar
- 2V. Balaram, Geosci. Front. 2019, 10, 1285.
- 3M. Traore, A. Gong, Y. Wang, L. Qiu, Y. Bai, W. Zhao, Y. Liu, Y. Chen, Y. Liu, H. Wu, S. Li, Y. You, J. Rare Earths 2023, 41, 182.
- 4M. Adeel, J. Y. Lee, M. Zain, M. Rizwan, A. Nawab, M. A. Ahmad, M. Shafiq, H. Yi, G. Jilani, R. Javed, R. Horton, Y. Rui, D. C. W. Tsang, B. Xing, Environ. Int. 2019, 127, 785.
- 5T. Kegl, A. Košak, A. Lobnik, Z. Novak, A. K. Kralj, I. Ban, J. Hazard. Mater. 2020, 386, 121632.
- 6M. Lakić, T. C. Breijaert, G. Daniel, F. G. Svensson, V. G. Kessler, G. A. Seisenbaeva, Sep. Purif. Technol. 2023, 323, 124487.
- 7I. Anastopoulos, A. Bhatnagar, E. C. Lima, J. Mol. Liq. 2016, 221, 954.
- 8W. Zhang, L. Hu, S. Hu, Y. Liu, RSC Adv. 2019, 9, 16058.
- 9H. Zhu, S. Chen, Y. Luo, J. Agric. Food Res. 2023, 12, 100552.
- 10Z. Mehrani, H. Ebrahimzadeh, E. Moradi, Y. Yamini, J. Mol. Liq. 2020, 307, 112925.
- 11Q. Wang, W. C. Wilfong, B. W. Kail, Y. Yu, M. L. Gray, ACS Sustain. Chem. Eng. 2017, 5, 10947.
- 12Y. Zhu, W. Wang, Y. Zheng, F. Wang, A. Wang, Carbohydr. Polym. 2016, 140, 51.
- 13D. Wu, Y. Gao, W. Li, X. Zheng, Y. G. Chen, Q. Wang, ACS Sustain. Chem. Eng. 2016, 4, 6732.
- 14H. Chen, Z. Ding, D. Yan, H. He, W. Xi, J. Hu, R. Zhang, Y. Yan, Q. Zhang, Carbohydr. Polym. 2022, 296, 119900.
- 15Z. Guo, Q. Li, Z. Li, C. Liu, X. Liu, Y. Liu, G. Dong, T. Lan, Y. Wei, J. Colloid Interface Sci. 2020, 562, 224.
- 16S. Iftekhar, V. Srivastava, M. Abdul Wasayh, M. Hezarjaribi, M. Sillanpää, Chem. Eng. J. 2020, 388, 124281.
- 17S. V. Bondarenko, Y. I. Tarasevich, V. E. Polyakov, A. I. Zhukova, Z. G. Ivanova, Adsorp. Sci. Technol. 2008, 26, 3.
- 18V. E. Diyuk, O. V. Ishchenko, O. B. Loginova, L. M. Melnik, L. D. Kisterska, V. V. Garashchenko, S. O. Lisovenko, O. A. Beda, N. A. Tkachuk, O. Y. Shevchenko, O. V. Turchun, J. Superhard Mater. 2019, 41, 221.
- 19S. V. Efremova, Russ. J. Appl. Chem. 2006, 79, 397.
- 20E. Bilgin Simsek, Z. Balta, P. Demircivi, J. Photochem. Photobiol., A 2019, 380, 111849.
- 21I. Jurgelane, J. Locs, J. Water Health. 2021, 19, 89.
- 22J. Han, T. Lei, Q. Wu, Carbohydr. Polym. 2014, 102, 306.
- 23J. Chen, Y. Li, Y. Zhang, Y. Zhu, J. Appl. Polym. Sci. 2015, 132, 1.
- 24J. H. Woo, N. H. Kim, S. Il Kim, O. K. Park, J. H. Lee, Compos. Part B Eng. 2020, 199, 108205.
- 25S. Bennour, F. Louzri, Adv. Chem. 2014, 2014, 1.
- 26H. Park, X. Guo, J. S. Temenoff, Y. Tabata, A. I. Caplan, F. K. Kasper, A. G. Mikos, P. O. Box, NIH Public Access 2010, 10, 541.
- 27M. Pasichnyk, M. Václavíková, I. Melnyk, J. Polym. Res. 2021, 28, 56. https://doi.org/10.1007/s10965-021-02418-z.
10.1007/s10965-021-02418-z Google Scholar
- 28E. Polido Legaria, S. D. Topel, V. G. Kessler, G. A. Seisenbaeva, Dalton Trans. 2014, 44, 1273.
- 29S. D. Topel, E. P. Legaria, C. Tiseanu, J. Rocha, J. M. Nedelec, V. G. Kessler, G. A. Seisenbaeva, J. Nanopart. Res. 2014, 16, 2783. https://doi.org/10.1007/s11051-014-2783-6.
10.1007/s11051-014-2783-6 Google Scholar
- 30T. C. Breijaert, T. M. Budnyak, V. K. Kessler, G. A. Seisenbaeva, Dalton Trans. 2022, 51, 17978.
- 31Z. G. Song, Q. Yuan, P. Lv, K. Chen, Sensors 2021, 21, 1.
10.1109/JSEN.2021.3109763 Google Scholar
- 32C. Bai, L. Wang, Z. Zhu, Int. J. Biol. Macromol. 2020, 147, 898.
- 33A. Vardanyan, A. Guillon, T. Budnyak, G. A. Seisenbaeva, Nanomaterials 2022, 12, 974. https://doi.org/10.3390/nano12060974.
- 34I. V. Melnyk, M. Vaclavikova, L. Ivanicova, M. Kanuchova, G. A. Seisenbaeva, V. G. Kessler, Appl. Surf. Sci. 2023, 609, 155253.
- 35B. Kwiecinska, S. Pusz, M. Krzesinska, B. Pilawa, Int. J. Coal Geol. 2007, 71, 455.
- 36K. Khoshnevisan, H. Maleki, H. Samadian, S. Shahsavari, M. H. Sarrafzadeh, B. Larijani, F. A. Dorkoosh, V. Haghpanah, M. R. Khorramizadeh, Carbohydr. Polym. 2018, 198, 131.
- 37F. Reguieg, L. Ricci, N. Bouyacoub, M. Belbachir, M. Bertoldo, Polym. Bull. 2020, 77, 929.
- 38J. L. Hovey, M. Dardona, M. J. Allen, T. M. Dittrich, Sep. Purif. Technol. 2021, 258, 118061.
- 39I. V. Melnyk, V. P. Goncharyk, L. I. Kozhara, G. R. Yurchenko, A. K. Matkovsky, Y. L. Zub, B. Alonso, Microporous Mesoporous Mater. 2012, 153, 171.