Unlocking energy potential: Investigating thermal degradation and kinetic modeling of health-care waste polymers for enhanced pyrolysis conversion
Corresponding Author
Joana B. Lourenço
Chemical Engineering Department, Universidade Federal de São Paulo, São Paulo, Brazil
Correspondence
Joana B. Lourenço, Chemical Engineering Department, Unifesp—Unidade José Alencar, Rua São Nicolau, n° 210, Centro—CEP: 09913-030 São Paulo, SP, Brazil.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorDaniel A. Bertuol
Chemical Engineering Department, Universidade Federal de Santa Maria, Santa Maria, Brazil
Contribution: Conceptualization (equal), Funding acquisition (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (equal)
Search for more papers by this authorNina P. G. Salau
Chemical Engineering Department, Universidade Federal de Santa Maria, Santa Maria, Brazil
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Funding acquisition (equal), Investigation (lead), Methodology (lead), Project administration (lead), Resources (lead), Supervision (lead), Validation (lead), Visualization (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Joana B. Lourenço
Chemical Engineering Department, Universidade Federal de São Paulo, São Paulo, Brazil
Correspondence
Joana B. Lourenço, Chemical Engineering Department, Unifesp—Unidade José Alencar, Rua São Nicolau, n° 210, Centro—CEP: 09913-030 São Paulo, SP, Brazil.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorDaniel A. Bertuol
Chemical Engineering Department, Universidade Federal de Santa Maria, Santa Maria, Brazil
Contribution: Conceptualization (equal), Funding acquisition (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (equal)
Search for more papers by this authorNina P. G. Salau
Chemical Engineering Department, Universidade Federal de Santa Maria, Santa Maria, Brazil
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Funding acquisition (equal), Investigation (lead), Methodology (lead), Project administration (lead), Resources (lead), Supervision (lead), Validation (lead), Visualization (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Recently, the main polymers present in the health-care waste (HCW) of a Brazilian university hospital were identified, revealing a composition of polypropylene (85%), high-density polyethylene (6%), polystyrene (5%), and cellulose (4%). Recognizing the potential for these materials to generate energy through pyrolysis, this study aimed to assess the thermal degradation of the HCW polymers and their respective polymer mixture using thermogravimetric analysis. Thermalgravimetric analysis encompassed three heating rates (5, 10, and 20°C min−1). The kinetic parameters of thermal degradation were estimated using the first-order reaction model. Friedman differential isoconversional method, as well as Ozawa, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose integral isoconversional methods, were applied to obtain the kinetic parameters, which can predict the thermal degradation kinetics of the polymers in thermal conversion process. Through statistical evaluation of the parameter estimation, it was demonstrated that the proposed methodology yielded fitted models for the experimental data on HCW. These models may be implemented in designing pyrolysis reactors that convert these polymers into energy, thereby mitigating environmental pollution.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app54620-sup-0001-Supinfo.docxWord 2007 document , 1 MB | Data S1: Supplementary Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 World Health Organization, in WHO Library Cataloguing-in-Publication Data, 2nd ed. (Ed: Y. C. Al), World Health Organization, Geneva, Switzerland 2014.
- 2V. Hasija, S. Patial, P. Raizada, S. Thakur, P. Singh, C. M. Hussain, Sci. Total Environ. 2022, 813, 151881.
- 3J. J. Klemeš, P. Jiang, Y. V. Fan, A. Bokhari, X. C. Wang, Renew. Sustain. Energy Rev. 2021, 150, 111400.
- 4A. Brillard, D. Kehrli, O. Douguet, K. Gautier, V. Tschamber, M. A. Bueno, J. F. Brilhac, Fuel 2021, 306, 121644.
10.1016/j.fuel.2021.121644 Google Scholar
- 5N. Deng, Y. f. Zhang, Y. Wang, Waste Manage. 2008, 28, 1572.
- 6U. Som, F. Rahman, S. Hossain, J. Eng. Sci. 2018, 5, H5.
- 7L. Qin, J. Han, B. Zhao, Y. Wang, W. Chen, F. Xing, J. Anal. Appl. Pyrolysis 2018, 136, 132.
- 8B. K. Lee, M. J. Ellenbecker, R. Moure-Eraso, Waste Manage. 2002, 22, 461.
- 9Z. Ding, H. Chen, J. Liu, H. Cai, F. Evrendilek, M. Buyukada, J. Hazard. Mater. 2021, 402, 123472.
- 10W. C. Huang, M. S. Huang, C. F. Huang, C. C. Chen, K. L. Ou, Fuel 2010, 89, 2305.
- 11N. Miskolczi, R. Nagy, Fuel Process. Technol. 2012, 104, 96.
- 12A. Dash, Study on the thermal pyrolysis of medical waste (plastic syringe) for the production of useful liquid fuels, National Institute of Technology Rourkela. 2012.
- 13R. Chen, D. Zhang, X. Xu, Y. Yuan, Fuel 2021, 295, 120632.
- 14P. Das, P. Tiwari, Thermochim. Acta 2017, 654, 191.
- 15T. Fateh, F. Richard, T. Rogaume, P. Joseph, J. Anal. Appl. Pyrolysis 2016, 120, 423.
- 16S. Khedri, S. Elyasi, Polym. Degrad. Stab. 2016, 129, 306.
- 17S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 2011, 520, 1.
- 18S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes, 1st ed., Springer, Alabama 2015.
10.1007/978-3-319-14175-6 Google Scholar
- 19J. Cai, Y. Wang, L. Zhou, Q. Huang, Fuel Process. Technol. 2008, 89, 21.
- 20J. Nisar, G. Ali, A. Shah, M. Iqbal, R. Ali Khan, F. Anwar, R. Ullah, M. Salim Akhter, Waste Manage. 2019, 88, 236.
- 21H. L. Friedman, J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183.
- 22A. W. Coats, J. P. Redfern, Nature 1964, 201, 68.
- 23T. Ozawa, Bull. Chem. Soc. Jpn. 1965, 38, 1881.
- 24H. E. Kissinger, Anal. Chem. 1957, 29, 1702.
- 25E. S. Freeman, B. Carroll, J. Phys. Chem. 1958, 62, 394.
- 26N. Deng, W. W. Wang, W. Q. Cui, Y. F. Zhang, H. T. Ma, J. Cent. South Univ. 2014, 21, 1034.
- 27M. Gharasoo, M. Thullner, M. Elsner, Environ. Model. Softw. 2017, 98, 12.
- 28A. Constante, S. Pillay, J. Appl. Polym. Sci. 2017, 1, 44622.
10.1002/app.44622 Google Scholar
- 29B. Danon, N. M. Mkhize, P. Van Der Gryp, J. F. Görgens, Thermochim. Acta 2015, 601, 45.
- 30P. E. Sánchez-Jiménez, A. Perejón, J. M. Criado, M. J. Diánez, L. A. Pérez-Maqueda, Polymer (Guildf). 2010, 51, 3998.
- 31P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. M. Criado, J. Phys. Chem. C 2012, 116, 11797.
- 32Y. Soudais, L. Moga, J. Blazek, F. Lemort, J. Anal. Appl. Pyrolysis 2007, 80, 36.
- 33Y. Soudais, L. Moga, J. Blazek, F. Lemort, J. Anal. Appl. Pyrolysis 2007, 78, 46.
- 34J. B. Lourenço, T. S. Pasa, D. A. Bertuol, N. P. G. Salau, J. Environ. Sci. Heal. Part A 2020, 1, 1.
- 35M. I. G. Miranda, C. I. D. Bica, S. M. B. Nachtigall, N. Rehman, S. M. L. Rosa, Thermochim. Acta 2013, 565, 65.
- 36A. A. Jain, A. Mehra, V. V. Ranade, Fuel 2016, 165, 490.
- 37F. Xu, B. Wang, D. Yang, J. Hao, Y. Qiao, Y. Tian, Energy Convers. Manage. 2018, 171, 1106.
- 38S. Majoni, A. Chaparadza, Thermochim. Acta 2018, 662, 8.
- 39S. Vyazovkin, J. Comput. Chem. 1997, 18, 393.
- 40T. Ozawa, Bullchemsocjpn 1965, 38, 1881.
- 41J. H. Flynn, L. A. Wall, Polym. Lett. 1966, 4, 323.
- 42T. Akahira, T. Sunose, Res Rep Chiba Inst Technol 1971, 16, 22.
- 43J. R. Dormand, P. J. Prince, J. Comput. Appl. Math. 1980, 6, 19.
10.1016/0771-050X(80)90013-3 Google Scholar
- 44L. F. Shampine, M. W. Reichelt, SIAM J. Sci. Comput 1997, 18, 1.
- 45T. O. Kvalseth, Am. Stat. 1985, 39, 279.
- 46R. R. Karri, J. N. Sahu, J. Mol. Liq. 2018, 265, 592.
- 47D. R. Anderson, K. P. Burnham, J. Wildl. Manage. 2002, 68, 912.
10.2307/3803155 Google Scholar
- 48T. M. Stepanik, D. E. Ewing, R. Whitehouse, Radiat. Phys. Chem. 2000, 57, 377.
- 49S. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J. J. Suñol, Thermochim. Acta 2014, 590, 1.
- 50R. Navarro, L. Torre, J. M. Kenny, A. Jiménez, Polym. Degrad. Stab. 2003, 82, 279.
- 51Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. 2007.
- 52H. Ye, Y. Zhang, Z. Yu, J. Mu, Constr. Build. Mater. 2018, 173, 10.
- 53R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric Identification of Organic Compounds, 7th ed., John Wiley & Sons, USA 2005.
- 54Carrillo, F.; Colom, X.; Su~ Nol, J. J.; Saurina, J. 2004.
- 55A. V. Rajulu, A. Venu Nadhan, R. Rama Devi, J. Appl. Polym. Sci. 2006, 102, 2338.
- 56M. Zhang, F. L. P. Resende, A. Moutsoglou, D. E. Raynie, J. Anal. Appl. Pyrolysis 2012, 98, 65.
- 57M. R. Jung, F. D. Horgen, S. V. Orski, C. V. Rodriguez, K. L. Beers, G. H. Balazs, T. T. Jones, T. M. Work, K. C. Brignac, S.-J. Royer, K. D. Hyrenbach, B. A. Jensen, J. M. Lynch, Mar. Pollut. Bull. 2018, 127, 704.
- 58R. C. Asensio, M. S. A. Moya, J. M. de la Roja, M. Gómez, Anal. Bioanal. Chem. 2009, 395, 2081.
- 59Hu, M.; Chen, Z.; Wang, S.; Guo, D.; Ma, C.; Zhou, Y.; Chen, J.; Laghari, M.; Fazal, S.; Xiao, B.; Zhang, B.; Ma, S. 2016, 118, 1.
- 60Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. 2015.
- 61J. V. M. Barreto, A. K. C. d. Albuquerque, N. G. Jacques, R. M. R. Wellen, J. Appl. Polym. Sci. 2023, 140, 1.
- 62J. Wang, M. G. Laborie, M. P. Wolcott, Thermochim. Acta 2005, 439, 68.
- 63S. Bianchi, P. Marchese, M. Vannini, L. Sisti, A. Tassoni, M. Ferri, N. Mallegni, P. Cinelli, A. Celli, J. Appl. Polym. Sci. 2023, 140, 1.
10.1002/app.53878 Google Scholar
- 64C. A. Coulson, W. E. Duncanson, London, Edinburgh, Dublin Philos. Mag. J. Sci 1942, 33, 754.
- 65G. I. Senum, R. T. Yang, J. Therm. Anal. 1977, 11, 445.
- 66T. Wanjun, L. Yuwen, Y. Xil, W. Zhiyong, W. Cunxin, J. Therm. Anal. Calorim. 2005, 81, 347.
- 67X. Wang, M. Hu, W. Hu, Z. Chen, S. Liu, Z. Hu, B. Xiao, Bioresour. Technol. 2016, 219, 510.