Mechanical properties, thermal stability, and thermal degradation kinetics of silicone rubber/ethylene-vinyl acetate copolymer/magnesium sulfate whisker composites compatibilized by ethylene-acrylic acid copolymer
Muhammad Zia-ul-Haq
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Conceptualization (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorZaheer Ul Haq
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Formal analysis (supporting), Methodology (supporting)
Search for more papers by this authorJian Wu
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Methodology (supporting), Writing - original draft (supporting)
Search for more papers by this authorZonglin Peng
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Yong Zhang
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Correspondence
Yong Zhang, State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Email: [email protected]
Contribution: Supervision (lead), Writing - review & editing (supporting)
Search for more papers by this authorMuhammad Zia-ul-Haq
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Conceptualization (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorZaheer Ul Haq
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Formal analysis (supporting), Methodology (supporting)
Search for more papers by this authorJian Wu
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Methodology (supporting), Writing - original draft (supporting)
Search for more papers by this authorZonglin Peng
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Yong Zhang
State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Correspondence
Yong Zhang, State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Email: [email protected]
Contribution: Supervision (lead), Writing - review & editing (supporting)
Search for more papers by this authorAbstract
Silicone rubber/ethylene-vinyl acetate copolymer/magnesium sulfate whisker composites containing ethylene-acrylic acid copolymer (MS/SR/EVM/EAA) as a compatibilizer were successfully prepared. Moreover, the magnesium sulfate whisker surface was modified with 3 wt% of silane coupling agent (KH570), resulting in composites including (unmodified magnesium sulfate whisker) uMS/SR/EVM, (modified magnesium sulfate whisker) mMS/SR/EVM, and mMS/SR/EVM/EAA were compared. The values of thermal decomposition activation energy (Ea) calculated by the two different methods (Kissinger and Friedman methods) show that the composites filled with 5 and 20 phr whiskers have lower values of activation energy (Ea) than the SR/EVM blend. The tensile strength of composites with a 5 phr modified whisker is 14.5 MPa, which is higher than that of the SR/EVM blend and uMS5/SR/EVM composite. The tear strength of the composite with 20 phr mMS is 51.6 kN m−1, much higher than that of the composite with 20 phr uMS and SR/EVM blend. The mechanical properties were also investigated after thermal aging of the composites at 85°C for 48 h. The thermal conductivity of the composites with high filler loading was studied.
CONFLICT OF INTEREST
The authors declare no potential conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Research data not shared.
Supporting Information
Filename | Description |
---|---|
app53404-sup-0001-Supinfo.docxWord 2007 document , 7.6 MB | Figure S1. FTIR spectra (a) modified whisker (b) unmodified whisker (c) KH570 Figure S2. XRD patterns of (a) unmodified whisker (b) KH570-modified whisker Figure S3. SEM images of (a) unmodified whisker (b) modified whisker (c) SR/EVM blend (d) uMS5/SR/EVM (e) mMS5/SR/EVM (f) mMS5/SR/EVM/EAA (g) uMS15/SR/EVM (h) mMS15/SR/EVM (i) mMS15/SR/EVM/EAA composites Figure S4. Dependence of (a) Modulus at 300% (b) Tear strength (c) Hardness (Shore A) (d) Elongation at break (e) Volume loss (f) Set at break with MS whisker content Figure S5. MS whisker modified by a coupling agent (a) KH570 (b) interfacial interaction between modified whisker, EAA, and SR/EVM matrix Figure S6. Dependence (a) Tensile strength (b) Elongation at break (c) Tear strength with the content of MS whisker after aging (2 days and 85 °C) Table S1. Tg of samples Figure S7. (a) Storage modulus (b) loss tangent (tan δ) of composites as a function of temperature Figure S8. Schematic illustration of the mechanism of degradation under heat (a) Silicone rubber (b) EVM Figure S9. TGA curves with a different heating rate of 5, 10, 20, and 30°C min−1 as a function of temperature in nitrogen. (a) SR/EVM (b) uMS5/SR/EVM (c) uMS20/SR/EVM Figure S10. Kissinger method applied to experimental TGA at different heating rates Figure S11. Friedman plots at different conversion (a) SR/EVM (b) uMS5/SR/EVM (c) uMS20/SR/EVM Figure S12. Heating curves of the composites with different loading of MS whisker Table S2. Crystallization temperatures and melting temperatures of the composites Table S3. Contact angles and surface energy of samples Figure S13. Plot of surface water contact angles as a function of MS whisker content in the composites Figure S14. Dependence of thermal conductivity of composites on MS whisker loading |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1P. Song, J. Wu, G. Wang, Y. Zhang, J. Appl. Polym. Sci. 2021, 138, 50727.
- 2Q. Zhu, Z. Wang, H. Zeng, T. Yang, X. Wang, Compos. Part Appl. Sci. Manuf. 2021, 142, 106240.
- 3H. Li, Y. Li, X. Lai, H. Cao, R. Yuan, X. Zeng, J. Appl. Polym. Sci. 2019, 136, 47360.
- 4Y. Tan, V. Wachtendorf, P. Klack, T. Kukofka, J. Ruder, B. Schartel, J. Appl. Polym. Sci. 2020, 137, 47548.
- 5A. A. Ramachandran, L. P. Mathew, S. Thomas, Eur. Polym. J. 2019, 118, 595.
- 6K. Zdiri, A. Cayla, A. Elamri, A. Erard, F. Salaun, J. Funct. Biomater. 2022, 13, 117.
- 7X. Bian, G. Li, X. Chen, Macromolecules 2022, 55, 1709.
- 8K. Zdiri, A. Elamri, M. Hamdaoui, O. Harzallah, N. Khenoussi, J. Brendlé, Waste Biomass Valoriz. 2020, 11, 2285.
- 9S. Khanra, A. Kumar, D. Ganguly, S. K. Ghorai, S. Chattopadhyay, Polym. Eng. Sci. 2022, 62, 1239.
- 10Y. Cai, J. Zheng, Y. Hu, J. Wei, H. Fan, Eur. Polym. J. 2022, 177, 111468.
- 11E. Alikhani, M. Mohammadi, M. Sabzi, Polym. Bull. 2022, 79, 1.
- 12Z. Tang, C. Zhu, F. Fan, B. Qing, F. Shao, X. Deng, Mater. Chem. Phys. 2017, 195, 143.
- 13E.-S. Kim, Y. C. Kim, J. Park, Y. Kim, S.-H. Kim, D.-S. Kim, J. Mater. 2018, 4, 149.
- 14T. Zhang, T. Li, Z. Zhou, M. Li, Y. Jia, C. Cheeseman, Compos. Part B Eng. 2020, 198, 108203.
- 15D. Zhu, X. Nai, S. Lan, S. Bian, X. Liu, W. Li, Appl. Surf. Sci. 2016, 390, 25.
- 16Y. Lu, X. Li, C. Wu, S. Xu, J. Alloys Compd. 2018, 750, 197.
- 17J. Saeng-on, D. Aht-Ong, J. Appl. Polym. Sci. 2018, 135, 46836.
- 18Z. Li, M. Chen, W. Ma, J. Mater. Sci. 2016, 51, 4566.
- 19L. Bazli, A. Khavandi, M. A. Boutorabi, M. Karrabi, Polymer 2017, 113, 156.
- 20J. Yang, S. Nie, Polym. Degrad. Stab. 2017, 144, 270.
- 21M. Megahed, D. E. Tobbala, M. A. A. El-baky, Polym. Compos. 2021, 42, 271.
- 22K. Zdiri, A. Elamri, O. Harzallah, M. Hamdaoui, J. Brendlé, J. Text. Inst. 2021, 112, 1753.
- 23K. Zdiri, A. Elamri, O. Harzallah, M. Hamdaoui, in Advances in Applied Research on Textile and Materials - IX, Vol. 17 (Eds: S. Msahli, F. Debbabi), Springer Proceedings in Materials, Springer International Publishing, Cham 2022, p. 29.
10.1007/978-3-031-08842-1_7 Google Scholar
- 24J. Lopes Alves, P. de Tarso Vieira e Rosa, V. C. de Redondo Realinho, M. de Sousa Pais Antunes, J. Ignacio Velasco, A. R. Morales, J. Appl. Polym. Sci. 2021, 138, 50784.
- 25M. Bonnevide, T. N. Phan, N. Malicki, S. K. Kumar, M. Couty, J. Jestin, Polymer 2020, 190, 122190.
- 26S. Utara, P. Jantachum, B. Sukkaneewat, J. Appl. Polym. Sci. 2017, 134, 1.
- 27K. Roy, S. Chandra Debnath, A. Das, G. Heinrich, P. Potiyaraj, Polym. Test. 2018, 67, 487.
- 28X. Chen, L. Zhou, X. Pan, J. Hu, Y. Hu, S. Wei, J. Appl. Polym. Sci. 2016, 133, 42850.
- 29M. P. Drupitha, K. Naskar, G. B. Nando, J. Appl. Polym. Sci. 2017, 134, 45164.
- 30L. Bazli, A. Khavandi, M. A. Boutorabi, M. Karrabi, Iran. Polym. J. 2016, 25, 907.
- 31W. Zhang, W. Yan, R. Pan, W. Guo, G. Wu, Polym. Eng. Sci. 2018, 58, 719.
- 32C. Gao, Z. Li, Y. Liu, X. Zhang, J. Wang, Y. Wu, Ind. Eng. Chem. Res. 2017, 56, 3516.
- 33L. Dang, D. Tang, X. Du, Y. Zhao, Z. Lv, J. Appl. Polym. Sci. 2020, 137, 49210.
- 34C. Gao, X. Ren, J. Zhang, B. Wang, Y. Liu, Y. Wu, Thermochim. Acta 2018, 663, 9.
- 35L. Dang, X. Nai, Y. Dong, W. Li, RSC Adv. 2017, 7, 21655.
- 36Y. Lu, B. Wang, M. Xue, Y. Lu, Waste Manag. 2021, 121, 52.
- 37S. Krishnamurthy, P. Balakrishnan, Polym. Compos. 2019, 40, E1612.
- 38A. Leszczyńska, P. Radzik, K. Haraźna, K. Pielichowski, Thermochim. Acta 2018, 663, 145.
- 39H. Ichiura, H. Nakaoka, T. Konishi, J. Clean. Prod. 2020, 276, 123350.
- 40Y. Carpier, A. Alia, B. Vieille, F. Barbe, Polym. Degrad. Stab. 2021, 186, 109525.
- 41S. R. Karnati, P. Agbo, L. Zhang, Compos. Commun. 2020, 17, 32.
- 42J. Cai, D. Xu, Z. Dong, X. Yu, Y. Yang, Renew. Sust. Energ. Rev. 2018, 82, 2705.
- 43M. Zygo, M. Lipinska, Z. Lu, M. Ilcíková, M. R. Bockstaller, Appl. Clay Sci. 2019, 183, 105359.
- 44P. Budrugeac, Thermochim. Acta 2021, 706, 179063.