Phosphoglyceride-coated polylactic acid porous microspheres and its regulation of curcumin release behavior
Corresponding Author
Wen Shen
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Correspondence
Wen Shen, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Yuanlan Ning, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Xuemei Ge, Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yuanlan Ning
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Correspondence
Wen Shen, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Yuanlan Ning, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Xuemei Ge, Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xuemei Ge
Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, PR China
Correspondence
Wen Shen, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Yuanlan Ning, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Xuemei Ge, Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
Email: [email protected]
Search for more papers by this authorGuodong Fan
College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorFen Ao
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorShang Wu
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorYueyang Mao
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorCorresponding Author
Wen Shen
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Correspondence
Wen Shen, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Yuanlan Ning, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Xuemei Ge, Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yuanlan Ning
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Correspondence
Wen Shen, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Yuanlan Ning, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Xuemei Ge, Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xuemei Ge
Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, PR China
Correspondence
Wen Shen, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Yuanlan Ning, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Email: [email protected]
Xuemei Ge, Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
Email: [email protected]
Search for more papers by this authorGuodong Fan
College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorFen Ao
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorShang Wu
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorYueyang Mao
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, PR China
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Number: 81601596; The Key Research and Development Program of Shaanxi province, Grant/Award Numbers: 2021SF-339, 2020SF-423, 2020FP-029
Abstract
Polymer microspheres are widely used as carriers in delivering of hydrophobic or hydrophilic drugs. Surface coating of microspheres could be one of the attractive strategies to improve their properties. In this study, biodegradable polymer polylactic acid was dissolved in chloroform and non-solvent to electrospray porous polymer microspheres. The properties of the microspheres were improved by phosphoglyceride (P-P-Gly) coating, and its behavior was investigated by loading with curcumin as a model drug. The morphologies of different microspheres were observed by scanning electron microscope. The results indicated that the microspheres obtained by dimethyl sulfoxide as non-solvent could form the structure with porous characteristics. X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy analysis revealed that P-P-Gly was successfully coated on the surface of the microspheres. In addition, the thermal behavior of the coated microspheres was investigated by differential scanning calorimetry. In vitro release experiments indicated that the drug-loaded microspheres showed a very gentle release trend, which was mainly due to the P-P-Gly coating could not completely cover the pores of the microspheres. The P-P-Gly-coated microspheres prepared in this work can be used as controlled release drug carriers with special needs.
CONFLICT OF INTEREST
The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1N. K. Varde, D. W. Pack, Expert Opin. Biol. Ther. 2004, 4, 35.
- 2L. S. Hakim, F. C. Kusumasari, E. Budianto, Mater. Today: Proc. 2020, 22, 306.
- 3X. H. Li, X. F. Ji, K. Chen, X. Yuan, Z. H. Lei, M. W. Ullah, J. Xiao, G. Yang, Mater. Sci. Eng., C 2021, 121, 111889.
- 4L. Zhou, Y. L. Zhang, D. F. Zeng, T. Shu, S. Wang, J. Sol-Gel Sci. Technol. 2021, 97, 600.
- 5J. S. Quan, H. L. Jiang, E. M. Kim, H. J. Jeong, Y. J. Choi, D. D. Guo, M. K. Yoo, H. G. Lee, C. S. Cho, Int. J. Pharm. 2008, 359, 205.
- 6J. D. Chen, P. P. Pan, Y. J. Zhang, S. N. Zhong, Q. Q. Zhang, Colloids Surf., B 2015, 134, 401.
- 7D. Y. Kong, Y. B. Shi, Y. Gao, M. G. Fu, S. L. Kong, G. M. Lin, Biomed. Pharmacother. 2020, 130, 110516.
- 8W. G. Zhou, H. P. Qian, L. S. Yan, D. Luo, N. Xu, J. X. Wu, Mater. Lett. 2015, 152, 293.
- 9X. Q. Zhou, C. L. Hou, T. L. Chang, Q. R. Zhang, J. F. Liang, Colloids Surf., B 2020, 187, 110645.
- 10Y. G. Bi, Z. T. Lin, S. T. Deng, Mater. Sci. Eng., C 2019, 100, 576.
- 11J. Buske, C. König, S. Bassarab, A. Lamprecht, S. Mühlau, K. G. Wagner, Eur. J. Pharm. Biopharm. 2012, 81, 57.
- 12H. Yang, Y. L. Yang, B. Z. Li, B. Adhikari, Y. Wang, H. L. Huang, D. Chen, Carbohydr. Polym. 2020, 231, 115692.
- 13R. Kojima, T. Yoshida, H. Tasaki, H. Umejima, M. Maeda, Y. Higashi, S. Watanabe, N. Oku, Int. J. Pharm. 2015, 492, 20.
- 14S. Farah, D. G. Anderson, R. Langer, Adv. Drug Del. Rev. 2016, 107, 367.
- 15S. Sinha Ray, Acc. Chem. Res. 2012, 45, 1710.
- 16B. W. Yu, L. Meng, S. R. Fu, Z. Y. Zhao, Y. H. Liu, K. Wang, Q. Fu, Colloids Surf., B 2018, 172, 105.
- 17T. K. Dash, V. B. Konkimalla, J. Controlled Release 2012, 158, 15.
- 18P. Jana, M. Shyam, S. Singh, V. Jayaprakash, A. Dev, Eur. Polym. J. 2021, 142, 110155.
- 19C. Wang, W. F. Luo, P. W. Li, S. D. Li, Z. M. Yang, Z. Hu, Y. Y. Liu, N. J. Ao, Carbohydr. Polym. 2017, 174, 432.
- 20X. J. Zhang, K. L. Dai, C. Y. Liu, H. F. Hu, F. L. Luo, Q. F. Qi, L. Wang, F. Ye, J. Jin, J. Tang, F. Yang, Polymer 2021, 13, 360.
- 21W. Shen, G. H. Zhang, Y. L. Li, G. D. Fan, J. Appl. Polym. Sci. 2018, 135, 46735.
- 22C. Z. Zhang, J. Niu, Y. S. Chong, Y. F. Huang, Y. Chu, S. Y. Xie, Z. H. Jiang, L. H. Peng, Eur. J. Pharm. Biopharm. 2016, 109, 1.
- 23Y. Cao, B. C. Wang, Y. Z. Wang, D. S. Lou, RSC Adv. 2014, 4, 30430.
- 24Z. Liu, W. L. Ye, J. C. Zheng, Q. D. Wang, G. W. Ma, H. Y. Liu, X. M. Wang, Regen. Biomater. 2020, 7, 381.
- 25X. Zhou, Y. Zhao, S. Y. Chen, S. L. Han, X. Q. Xu, J. W. Guo, M. Y. Liu, L. Che, X. H. Li, J. X. Zhang, Biomacromolecules 2016, 17, 2540.
- 26M. G. Zeles Hahn, Y. K. Lentz, T. J. Anchordoquy, C. S. Lengsfeld, J. Electrostat. 2011, 69, 67.
- 27Y. Wang, Y. Wei, X. H. Zhang, M. M. Xu, F. Liu, Q. Ma, Q. Cai, X. L. Deng, Chem. Eng. J. 2015, 273, 490.
- 28J. He, X. L. Hu, J. F. Cao, Y. Zhang, J. P. Xiao, L. J. Peng, D. L. Chen, C. D. Xiong, L. F. Zhang, Carbohydr. Polym. 2021, 253, 117198.
- 29X. H. Liu, X. B. Jin, P. X. Ma, Nat. Mater. 2011, 10, 398.
- 30Ö. Erdemli, A. Usanmaz, D. Keskin, A. Tezcaner, Colloids Surf., B 2014, 117, 487.
- 31Y. Y. Wei, X. B. Jiang, S. S. Li, X. Z. Kong, Eur. Polym. J. 2019, 115, 384.
- 32C. N. Patra, R. Priya, S. Swain, G. Kumar Jena, K. C. Panigrahi, D. Ghose, Future J. Pharm. Sci. 2017, 3, 33.
- 33M. J. Zhang, W. L. Guo, M. Ren, X. H. Ren, Mater. Lett. 2020, 262, 127193.
- 34J. F. Gao, W. Li, J. S.-P. Wong, M. J. Hu, R. K. Y. Li, Polymer 2014, 55, 2913.
- 35H. Rodríguez-Tobías, G. Morales, D. Grande, Mater. Sci. Eng., C 2019, 101, 306.
- 36G. Balzamo, X. Y. Zhang, W. A. Bosbach, E. Mele, Polymer 2020, 186, 122087.
- 37S. L. Hao, Y. Z. Wang, B. C. Wang, J. Deng, X. Liu, J. Y. Liu, Mater. Sci. Eng., C 2013, 33, 4562.
- 38S. Castro Coelho, B. Nogueiro Estevinho, F. Rocha, Food Chem. 2021, 339, 127850.
- 39W. K. Lau, D. Dharmasena, H. Horsley, N. V. Jafari, J. Malone-Lee, E. Stride, M. Edirisinghe, J. L. Rohn, J. Controlled Release 2020, 328, 490.
- 40L. Reyderman, S. Stavchansky, Int. J. Pharm. 1995, 124, 75.
- 41J. F. Zheng, H. Y. Zhang, Z. G. Zhao, C. C. Han, Polymer 2012, 53, 546.
- 42T. Yan, H. Ren, J. Liu, Q. J. Jiao, Chem. Eng. J. 2020, 379, 122333.
- 43Q. C. Zhang, J. Liu, X. J. Wang, M. X. Li, J. Yang, Colloid Polym. Sci. 2010, 288, 1385.
- 44J. P. Wang, J. K. Wang, Q. Zhou, Z. Li, Y. S. Han, Y. Song, S. Yang, X. K. Song, T. Qi, H. Möhwald, D. Shchukin, G. L. Li, Macromol. Mater. Eng. 2018, 303, 1700616.
- 45D. Zhao, J. S. Li, W. Suen, M. W. Chang, J. Huang, Mater. Sci. Eng., C 2016, 62, 835.
- 46X. Liu, L. T. Zhou, P. Heng, J. C. Xiao, J. P. Lv, Q. M. Zhang, M. E. Hickey, Q. Tu, J. Y. Wang, Colloids Surf., B 2019, 175, 264.
- 47J. M. Chan, L. F. Zhang, K. P. Yuet, G. Liao, J. W. Rhee, R. Langer, O. C. Farokhzad, Biomaterials 2009, 30, 1627.
- 48S. Nitta, K. Numata, Int. J. Mol. Sci. 2013, 14, 1629.
- 49L. Jongpaiboonkit, T. Franklin-Ford, W. L. Murphy, Adv. Mater. 1960, 2009, 21.
- 50H. E. Davis, B. Y. K. Binder, P. Schaecher, D. D. Yakoobinsky, A. Bhat, J. K. Leach, Tissue Eng. Part A 2013, 19, 1773.
- 51C. S. Kovacs, Early Hum. Dev. 2015, 91, 623.
- 52J. Q. Li, H. L. Zheng, X. R. Li, J. Su, L. Qin, Y. Sun, C. H. Guo, M. Beck-Broichsitter, M. Moehwald, L. Chen, Y. Y. Zhang, S. R. Mao, Eur. J. Pharm. Biopharm. 2019, 143, 70.
- 53J. Tang, L. Li, C. B. Howard, S. M. Mahler, L. Huang, Z. P. Xu, J. Mater. Chem. B 2015, 3, 6805.
- 54A. Zhang, L. Hai, T. Z. Wang, H. Cheng, M. Li, X. X. He, K. M. Wang, Chin. Chem. Lett. 2020, 31, 3158.
- 55X. W. Huang, J. F. Gao, W. Li, H. G. Xue, R. K. Y. Li, Y. W. Mai, Mater. Des. 2017, 117, 298.
- 56J. F. Gao, J. S.-P. Wong, M. J. Hu, W. Li, R. K. Y. Li, Nanoscale 2014, 6, 1056.
- 57J. F. Gao, X. Song, X. W. Huang, L. Wang, B. Li, H. G. Xue, Appl. Surf. Sci. 2018, 439, 394.
- 58C. Ribeiro, C. M. Costa, D. M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Gonçalves, V. F. Cardoso, S. Lanceros-Méndez, Nat. Protoc. 2018, 13, 681.
- 59M. Hernández-Guerrero, M. H. Stenzel, Polym. Chem. 2012, 3, 563.
- 60P. K. Szewczyk, U. Stachewicz, Adv. Colloid Interface Sci. 2020, 286, 102315.
- 61M. Srinivasarao, D. Collings, A. Philips, S. Patel, Science 2001, 292, 79.
- 62X. W. Huang, J. F. Gao, N. Zheng, W. Li, H. G. Xue, R. K. Y. Li, Colloids Surf. Physicochem. Eng. Asp. 2017, 517, 17.
- 63J. W. Xie, L. K. Lim, Y. Y. Phua, J. S. Hua, C. H. Wang, J. Colloid Interface Sci. 2006, 302, 103.
- 64Y. Li, F. Xu, X. Li, S. Y. Chen, L. Y. Huang, Y. Y. Bian, J. Wang, Y. T. Shu, G. J. Yan, J. Dong, S. P. Yin, W. Gu, J. Chen, Int. J. Pharm. 2021, 592, 119936.
- 65E. López Tobar, G. P. Blanch, M. L. Ruiz del Castillo, S. Sanchez Cortes, Vib. Spectrosc. 2012, 62, 292.
- 66T. Suprianto, Winarto, W. Wijayanti, I. N. G. Wardana, Int. J. Hydrogen Energy 2021, 46, 7147.
- 67P. R. Krishna Mohan, G. Sreelakshmi, C. V. Muraleedharan, R. Joseph, Vib. Spectrosc. 2012, 62, 77.
- 68L. Suryanegara, A. N. Nakagaito, H. Yano, Compos. Sci. Technol. 2009, 69, 1187.
- 69M. A. Alhnan, E. Kidia, A. W. Basit, Eur. J. Pharm. Biopharm. 2011, 79, 432.