Preparation and rheological investigation of tough PAAm hydrogel by adding branched polyethyleneimine
Corresponding Author
Yinyan Guan
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Correspondence to: Y. Guan (E-mail: [email protected]), and J. Liang (E-mail: [email protected])Search for more papers by this authorLi Wang
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorLi Cui
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorXinjun Shen
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorWeichun Gao
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorJing Meng
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorDan Li
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorChenguang Shen
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorYichen Zhang
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorGuodong Hu
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorCorresponding Author
Jiyan Liang
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Correspondence to: Y. Guan (E-mail: [email protected]), and J. Liang (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Yinyan Guan
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Correspondence to: Y. Guan (E-mail: [email protected]), and J. Liang (E-mail: [email protected])Search for more papers by this authorLi Wang
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorLi Cui
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorXinjun Shen
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorWeichun Gao
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorJing Meng
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorDan Li
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorChenguang Shen
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorYichen Zhang
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorGuodong Hu
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Search for more papers by this authorCorresponding Author
Jiyan Liang
School of Science, Shenyang University of Technology, Shenyang, 110870 China
Correspondence to: Y. Guan (E-mail: [email protected]), and J. Liang (E-mail: [email protected])Search for more papers by this authorABSTRACT
In this article, tough hydrogels are prepared by introducing the polyethyleneimine (PEI) with branched structure and a large number of NH2 and NH groups into permanently crosslinked polyacrylamide (PAAm) hydrogels matrix. To investigate the effects of B-PEI and chemical crosslinking agent (Bis) on the strength and toughness of hydrogels, a series of B-PEI/PAAm hydrogels with different mass percentage of Bis and B-PEI were manufactured and the rheological and swelling properties were compared. For all hydrogels, the storage modulus (G′) was much higher than the loss modulus (G″) in the linear viscoelastic region through the whole frequency range. The solid-like behavior and elastic nature (G′ > G″) are attributed to the permanent covalence crosslinking. Therefore, G′ increased when more Bis was added. For the nonlinear oscillatory shear measurement, hydrogels with B-PEI broke at larger γ than the pure PAAm hydrogels, indicating that the toughness of B-PEI/PAAm hydrogels has been improved by introducing B-PEI. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48541.
Supporting Information
Filename | Description |
---|---|
app48541-sup-0001-FigureS1.bmpWindows BMP image, 24.9 MB | Figure S1 Modulus (G′, G″) of B-PEI/PAAM hydrogels with different B-PEI content and Bis content as a function of frequency. B-PEI with different Mw: (a)Mw = 600; (b) Mw = 1800; (c) Mw = 10 000. (γ = 0.5%; T = 25°C; FN = 1 N) |
app48541-sup-0002-FigureS2.tifTIFF image, 34.5 MB | Figure S2 Complex modulus (G*) as a function of stear strain for the B-PEI-1800/PAAM hydrogels with different weight percentage of B-PEI and Bis. (ω = 6.28 rad s−1; T = 25°C; FN = 1 N) |
app48541-sup-0003-FigureS3.tifTIFF image, 34.5 MB | Figure S3 Modulus (G′, G″) as a function of stear strain for the B1-P0 hydrogel and B1-P1-1800 hydrogel. (ω = 6.28 rad s−1; T = 25°C; FN = 1 N) |
app48541-sup-0004-FigureS4.tifTIFF image, 33 MB | Figure S4 Modulus (G′, G″) of PAAm physical hydrogel with CAAm = 4 mol L−1 and without chemical cross-links agent as a function of frequency. (γ = 0.5%; T = 25°C; FN = 1 N) |
app48541-sup-0005-FigureS5.tifTIFF image, 35.5 MB | Figure S5 Flow rheological characterization of PAAm/B-PEI-1800 samples (CAAm = 4 mol/L, CB-PEI-1800 = 0.2~0.12 g/mL) with on an Anton Paar MCR102 rheometer with 25 mm flat parallel plates at 25°C |
app48541-sup-0006-FigureS6.bmpWindows BMP image, 10.4 MB | Figure S6 Photograph of of PAAm/B-PEI-1800 samples with a fixed CAAm = 4 mol/L, but varying CB-PEI-1800 (0.2~0.12 g/mL from left to right). |
app48541-sup-0007-Tables.docxWord 2007 document , 2.2 MB | Table S1 G′, G″, tanδ from frequency sweep at =0.5% and ω = 6.31 rad s−1 together with γ c and G’c (γ = γc) at ω =6.28 rad s−1 from amplitude sweep of B-PEI-600/PAAM(B-PEI-10000/PAAM) hydrogels Table S2 Composition of PAAm physical hydrogels and PAAm/B-PEI-1800 samples |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCE
- 1Es-Haghi, S. S.; Weiss, R. A. Macromolecules. 2016, 49, 8980.
- 2Appel, E. A.; Loh, X. J.; Jones, S. T.; Biedermann, F.; Dreiss, C. A.; Scherman, O. A. J. Am. Chem. Soc. 2012, 134, 11767.
- 3Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F. J.; Alfadul, S. M.; Mola, G. T. Environ. Chem. Lett. 2018, 16, 113.
- 4Zhang, Y. S.; Khademhosseini, A. Science. 2017, 356, 6337.
- 5Tran, V. V.; Park, D.; Lee, Y. C. Environ. Sci. Pollut. Res. 2018, 25, 24569.
- 6Gong, J. P. Soft Matter. 2010, 6, 2583.
- 7Chen, Q.; Zhu, L.; Chen, H.; Yan, H. L.; Huang, L. N.; Yang, J.; Zheng, J. Adv. Funct. Mater. 2015, 25, 1598.
- 8Zhang, X. Y.; Guo, X. L.; Yang, S. G.; Tan, S. X.; Li, X. F.; Dai, H. J.; Yu, X. L.; Zhang, X. L.; Weng, N.; Jian, B.; Xu, J. J. Appl. Polym. Sci. 2009, 112, 3063.
- 9Es-haghi, S. S.; Weiss, R. A. Macromolecules. 2017, 50, 8267.
- 10Es-Haghi, S. S.; Offenbach, I.; Debnath, D.; Weiss, R. A.; Cakmak, M. Polymer. 2017, 115, 239.
- 11Es-haghi, S. S.; Leonov, A. I.; Weiss, R. A. Macromolecules. 2014, 47, 4769.
- 12Okumura, Y.; Ito, K. Adv. Mater. 2001, 13, 485.
- 13Mayumi, K.; Tezuka, M.; Bando, A.; Ito, K. Soft Matter. 2012, 8, 8179.
- 14Song, F. F.; Li, X. Q.; Wang, Q.; Liao, L. Q.; Zhang, C. J. Biomed. Nanotechnol. 2015, 11, 40.
- 15Yang, J.; Deng, L. H.; Han, C. R.; Duan, J. F.; Ma, M. G.; Zhang, X. M.; Xu, F.; Sun, R. C. Soft Matter. 2013, 9, 1220.
- 16Chen, C. C.; Wang, H. Y.; Li, S. Y.; Fang, L.; Li, D. G. Cellulose. 2017, 24, 5487.
- 17Zhou, C. J.; Wu, Q. L. Colloids Surfac B:Biointerfaces. 2011, 84, 155.
- 18Hu, Y.; Du, Z. S.; Deng, X. L.; Wang, T.; Yang, Z. H.; Zhou, W. Y.; Wang, C. Y. Macromolecules. 2016, 49, 5660.
- 19Song, G. S.; Zhang, L.; He, C. C.; Fang, D. C.; Whitten, P. G.; Wang, H. L. Macromolecules. 2013, 18, 7423.
- 20Song, G. S.; Zhao, Z. Y.; Ping, X.; He, C. C.; Weiss, R. A.; Wang, H. L. Macromolecules. 2016, 49, 8265.
- 21Lu, Y. T.; Debnath, D.; Weiss, R. A.; Pugh, C. J. Polym. Sci. Pol. Chem. 2015, 53, 2399.
- 22Klemm, B.; Picchioni, F.; Raffa, P.; van Mastrigt, F. Ind. Eng. Chem. Res. 2018, 57, 8835.
- 23Xu, Q.; Sigen, A.; Gao, Y. S.; Guo, L. R.; Creagh-Flynn, J.; Zhou, D. Z.; Greiser, U.; Dong, Y. X.; Wang, F. G.; Tai, H. Y.; Liu, W. G.; Wang, W.; Wang, W. Acta Biomater. 2018, 75, 63.
- 24Cheng, C.; Zhang, X. L.; Meng, Y. B.; Zhang, Z. H.; Chen, J. D.; Zhang, Q. Q. Soft Matter. 2017, 13, 3003.
- 25Gaharwar, A. K.; Dammu, S. A.; Canter, J. M.; Wu, C. J.; Schmidt, G. Biomacromolecules. 2011, 12, 1641.
- 26Li, G.; Zhang, H. J.; Fortin, D.; Xia, H. S.; Zhao, Y. Langmuir. 2015, 31, 11709.
- 27Sakai, T.; Akagi, Y.; Matsunaga, T.; Kurakazu, M.; Chung, U. I.; Shibayama, M. Macromol. Rapid Commun. 2010, 31, 1954.
- 28Hao, J. K.; Weiss, R. A. Macromolecules. 2011, 44, 9390.
- 29Hyun, K.; Kim, S. H.; Ahn, K. H.; Lee, S. J. J. Non-Newton. Fluid Mech. 2002, 107, 51.
- 30Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H. Prog. Polym. Sci. 2011, 36, 1697.
- 31Nobile, M. R.; Pirozzi, V.; Somma, E.; D′Ayala, G. G.; Laurienzo, P. J. Polym. Sci. Pol. Phys. 2010, 46, 1167.
- 32Gu, S.; Cheng, G. R.; Yang, T. Y.; Ren, X. Y.; Gao, G. H. Macromol. Mater. Eng. 2017, 302, 1700402.