Comb-shaped diblock copolystyrene for anion exchange membranes
Correction(s) for this article
-
Erratum: Comb-shaped diblock copolystyrene for anion exchange membranes
- Volume 136Issue 30Journal of Applied Polymer Science
- First Published online: March 28, 2019
Meng Zhu
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Search for more papers by this authorXiaojuan Zhang
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Search for more papers by this authorYanxia Su
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Search for more papers by this authorCorresponding Author
Yiguang Wang
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Correspondence to: Y. Wang (E-mail: [email protected]), M. Zhang (E-mail: [email protected]), and N. Li (E-mail: [email protected])Search for more papers by this authorYibo Wu
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorDan Yang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorHao Wang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorMin Zhang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorCorresponding Author
Min Zhang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Correspondence to: Y. Wang (E-mail: [email protected]), M. Zhang (E-mail: [email protected]), and N. Li (E-mail: [email protected])Search for more papers by this authorQuan Chen
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Search for more papers by this authorCorresponding Author
Nanwen Li
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Correspondence to: Y. Wang (E-mail: [email protected]), M. Zhang (E-mail: [email protected]), and N. Li (E-mail: [email protected])Search for more papers by this authorMeng Zhu
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Search for more papers by this authorXiaojuan Zhang
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Search for more papers by this authorYanxia Su
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Search for more papers by this authorCorresponding Author
Yiguang Wang
Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Correspondence to: Y. Wang (E-mail: [email protected]), M. Zhang (E-mail: [email protected]), and N. Li (E-mail: [email protected])Search for more papers by this authorYibo Wu
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorDan Yang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorHao Wang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorMin Zhang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Search for more papers by this authorCorresponding Author
Min Zhang
College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Correspondence to: Y. Wang (E-mail: [email protected]), M. Zhang (E-mail: [email protected]), and N. Li (E-mail: [email protected])Search for more papers by this authorQuan Chen
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Search for more papers by this authorCorresponding Author
Nanwen Li
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Correspondence to: Y. Wang (E-mail: [email protected]), M. Zhang (E-mail: [email protected]), and N. Li (E-mail: [email protected])Search for more papers by this authorABSTRACT
To improve the properties of diblock copolystyrene-based anion exchange membranes (AEMs), a series of AEMs with comb-shaped quaternary ammonium (QA) architecture (QA-PSm-b-PDVPPAn-xC where x denotes the number of carbon atoms in different alkyl tail chains and has values of 1, 4, 8, and 10 and C denotes carbon) were designed and synthesized via subsequent quaternization reactions with three different alkyl halogens (methyl iodide and N-alkane bromines (CH3[CH2] x-1Br where x = 4, 8, and 10). Compared with triblock analogues quaternized with methyl iodide in our previous research, QA-PSm-b-PDVPPAn-xC (x = 4, 8, and 10) AEMs are more flexible with the introduction of a long alkyl tail chain; this probably impedes crystallization of the rigid polystyrene-based main chain and induces sterically adjustable ionic association. An increase in the pendant alkyl tail chain length generally led to enhanced microphase separation of the obtained AEMs, and this was confirmed using small-angle X-ray scattering and atomic force microscopy. The highest conductivity (25.5 mS cm−1) was observed for QA-PS120-b-PDVPPA80-10C (IEC = 1.94 meq g–1) at 20 °C. Furthermore, the water uptake (<30%) and swelling ratio (<13.1%) of QA-PSm-b-PDVPPAn-xC AEMs are less than half of these corresponding values for their triblock counterparts. The QA-PS120-b-PDVPPA80-10C membrane retained a maximum stability that was as high as 86.8% of its initial conductivity after a 40-day test (10 M NaOH, 80 °C), and this was probably because of the steric shielding of the cationic domains that were surrounded by the longest alkyl tail chains. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47370.
Supporting Information
Filename | Description |
---|---|
APP47370-sup-0001-Supinfo.docxWord 2007 document , 1.4 MB | Appendix S1: Supplementary Material |
APP47370-sup-0001-FigureS5.tifTIFF image, 76.2 KB | Fig. S1 1H NMR spectra of PS180-b-PDVPPA76 diblock copolymer in chloroform-d. Fig. S2 GPC profiles of macro-PSm and diblock polymers. Fig. S3. FTIR spectra of : (a) PS120-b-PDVPPA80, (b) QA-PS120-b-PDVPPA80-4C, (c) QA-PS120-b-PDVPPA80-8C and (d) QA-PS120-b-PDVPPA80-10C AEMs. Fig. S4. DSC profile of PS120-b-PDVPPA80 and QA-PS120-b-PDVPPA80 based AEMs. Fig. S5 DTG curves of: (a) PS120-b-PDVPPA80, (b) QA-PS120-b-PDVPPA80-4C, (c) QA-PS120-b-PDVPPA80-8C and (d) QA-PS120-b-PDVPPA80-10C AEMs. |
APP47370-sup-0001-FigureS6.tifTIFF image, 439.9 KB | Fig. S6 The frequency dependence of conductivities at different temperature. |
APP47370-sup-0001-FigureS7.tifTIFF image, 37.7 KB | Fig. S7 The pore size distribution of the QA-PS120-b-PDVPPA80-10C AEMs. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Varcoe, R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T.; Zhuang, L. Energ. Environ. Sci. 2014, 7, 3135.
- 2Xu, T.; Wu, D.; Wu, L. Prog. Polym. Sci. 2008, 33, 894.
- 3Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Ed. 2007, 46, 8024.
- 4Price, S. C.; Ren, X.; Jackson, A. C.; Ye, Y.; Elabd, Y. A.; Beyer, F. L. Macromolecules. 2013, 46, 7332.
- 5Ono, H.; Miyake, J.; Shimada, S.; Uchida, M.; Miyatake, K. J. Mater. Chem. A. 2015, 3, 21779.
- 6Li, N.; Guiver, M. D. Macromolecules. 2014, 47, 2175.
- 7Nuñez, S. A.; Hickner, M. A. ACS Macro Lett. 2013, 2, 49.
- 8Yan, J.; Hickner, M. A. Macromolecules. 2010, 43, 2349.
- 9Qiu, B.; Lin, B.; Qiu, L.; Yan, F. Mater. Chem. 2012, 22, 1040.
- 10Li, W.; Fang, J.; Lv, M.; Chen, C.; Chi, X.; Yang, Y.; Zhang, Y. Mater. Chem. 2011, 21, 11340.
- 11Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.; Yan, Y. Angew. Chem. Int. Ed. 2009, 48, 6499.
- 12Wang, J.; Li, S.; Zhang, S. Macromolecules. 2010, 43, 3890.
- 13Dewi, E. L.; Oyaizu, K.; Nishide, H.; Tsuchida, E. J. Power Sources. 2003, 115, 149.
- 14Huang, A.; Xia, C.; Xiao, C.; Zhuang, L. J. Appl. Polym. Sci. 2006, 100, 2248.
- 15Jannasch, P.; Weiber, E. A. Macromol. Chem. Phys. 2016, 217, 1108.
- 16Zhang, M.; Liu, J.; Wang, Y.; An, L.; Guiver, M. D.; Li, N. J. Mater. Chem. A. 2015, 3, 12284.
- 17Dang, H.-S.; Jannasch, P. J. Mater. Chem. A. 2016, 4, 11924.
- 18Lin, C.; Huang, X.; Guo, D.; Zhang, Q.; Zhu, A.; Ye, M.; Liu, Q. J. Mater. Chem. A. 2016, 4, 13938.
- 19Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. J. Membr. Sci. 2017, 522, 267.
- 20Yang, Z.; Zhou, J.; Wang, S.; Hou, J.; Wu, L.; Xu, T. J. Mater. Chem. A. 2015, 3, 15015.
- 21Gallant, B. M.; Gu, X. W.; Chen, D. Z.; Greer, J. R.; Lewis, N. S. ACS Nano. 2015, 9, 5143.
- 22Wang, X.; Goswami, M.; Kumar, R.; Sumpter, B. G.; Mays, J. Soft Matter. 2012, 8, 3036.
- 23Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L. Energ. Environ. Sci. 2014, 7, 354.
- 24Li, N.; Leng, Y.; Hickner, M. A.; Wang, C.-Y. J. Am. Chem. Soc. 2013, 135, 10124.
- 25Li, X.; Yu, Y.; Liu, Q.; Meng, Y. J. Membr. Sci. 2013, 436, 202.212.
- 26Zhao, Z.; Wang, J.; Li, S.; Zhang, S. J. Power Sources. 2011, 196, 4445.
- 27Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133, 10646.
- 28Zhu, M.; Zhang, M.; Chen, Q.; Su, Y.; Zhang, Z.; Liu, L.; Wang, Y.; An, L.; Li, N. Polym. Chem. 2017, 8(13), 2074.
- 29He, Y.; Si, J.; Wu, L.; Chen, S.; Zhu, Y.; Pan, J.; Ge, X.; Yang, Z.; Xu, T. J. Membr. Sci. 2016, 515, 189.
- 30Zeng, L.; Zhao, T.; An, L.; Zhao, G.; Yan, X. J. Membr. Sci. 2015, 493, 340.
- 31Pan, J.; Chen, C.; Zhuang, L.; Lu, J. T. Acc. Chem. Res. 2012, 45, 473.
- 32Li, N.; Yan, T.; Li, Z.; Thurn-Albrecht, T.; Binder, W. H. Energ. Environ. Sci. 2012, 5(7), 7888.
- 33Dang, H. S.; Jannasch, P. Macromolecules. 2015, 48, 5742.
- 34Ran, J.; Fu, C.; Ding, L.; Cao, P.; Xu, T. J. Mater. Chem. A. 2018, 6(14), 5714.
- 35Rao, A.; Nam, S. Y.; Kim, T. H. J. Mater. Chem. A. 2015, 3(16), 8571.