Effect of solvent quality on Poiseuille flow of polymer solutions in microchannels: A dissipative particle dynamics study
Corresponding Author
Shaofeng Xu
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, 60208
Correspondence to: S. Xu (E-mails: [email protected]; [email protected])Search for more papers by this authorYinghou Lou
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Search for more papers by this authorPing He
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Search for more papers by this authorXiangyang Wang
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Search for more papers by this authorJiugen Wang
School of Mechanical Engineering, Zhejiang University, Zhejiang, China
Search for more papers by this authorCorresponding Author
Shaofeng Xu
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, 60208
Correspondence to: S. Xu (E-mails: [email protected]; [email protected])Search for more papers by this authorYinghou Lou
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Search for more papers by this authorPing He
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Search for more papers by this authorXiangyang Wang
Ningbo Institute of Technology, Zhejiang University, Zhejiang, China
Search for more papers by this authorJiugen Wang
School of Mechanical Engineering, Zhejiang University, Zhejiang, China
Search for more papers by this authorABSTRACT
The Poiseuille flows of polymer solutions for varying quality solvents in microchannels have been simulated using dissipative particle dynamics. In particular, the velocity distributions and the polymer migration across the channel have been investigated for good, athermal, and poor solvents. The velocity profiles for all three kinds of solvent deviate from the parabolic profile, and the velocity profile of the athermal solvent falls in between the good solvent and the poor solvent. For the athermal solvent, a migration away from the wall due to the hydrodynamic interactions between the chains and the wall is observed, and a migration away from the channel center due to the different chain Brownian diffusivities is also observed. For the good solvent, because of the more stretched polymer chains, the migration away from the wall is stronger than that for the athermal solvent. However, the migration away from the channel center is not observed for good solvents. For the poor solvent, the hydrodynamic interaction within the chains is screened, and the polymer chains migrate toward the wall and appear to be absorbed by the wall. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47345.
REFERENCES
- 1Padding, J.; Briels, W. J. J. Phys.: Condens. Matter. 2011, 23, 233101.
- 2Ding, M.; Duan, X.; Shi, T. Soft Matter. 2017, 13, 7239.
- 3Vo, M. D.; Papavassiliou, D. V. Carbon. 2016, 100, 291.
- 4Palmer, T. L.; Baardsen, G.; Skartlien, R. J. Dispersion Sci. Technol. 2018, 39, 190.
- 5Rellegadla, S.; Prajapat, G.; Agrawal, A. Appl. Microbiol. Biotechnol. 2017, 101, 4387.
- 6Yeo, L. Y.; Chang, H. C.; Chan, P. P.; Friend, J. R. Small. 2011, 7, 12.
- 7Larson, R. G. J. Rheol. 2005, 49, 1.
- 8Ma, H. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, 2007.
- 9Schroeder, C. M. J. Rheol. 2018, 62, 371.
- 10Perkins, T. T.; Smith, D. E.; Chu, S. Science. 1997, 276, 2016.
- 11Smith, D. E.; Chu, S. Science. 1998, 281, 1335.
- 12Smith, D. E.; Babcock, H. P.; Chu, S. Science. 1999, 283, 1724.
- 13Schroeder, C. M.; Babcock, H. P.; Shaqfeh, E. S.; Chu, S. Science. 2003, 301, 1515.
- 14Larson, R.; Hu, H.; Smith, D.; Chu, S. J. Rheol. 1999, 43, 267.
- 15Agarwal, U.; Dutta, A.; Mashelkar, R. Chem. Eng. Sci. 1994, 49, 1693.
- 16Graham, M. D. Annu. Rev. Fluid Mech. 2011, 43, 273.
- 17Metzner, A.; Cohen, Y.; Rangel-Nafaile, C. J. Non-Newton. Fluid Mech. 1979, 5, 449.
- 18Brunn, P. J. Polym. Sci. Polym. Phys. 1985, 23, 89.
- 19Brunn, P.; Grisafi, S. J. Polym. Sci. Polym. 1985, 23, 73.
- 20Fang, L.; Hu, H.; Larson, R. G. J. Rheol. 2005, 49, 127.
- 21Fang, L.; Hsieh, C.-C.; Larson, R. G. Macromolecules. 2007, 40, 8490.
- 22Jo, K.; Chen, Y.-L.; de Pablo, J. J.; Schwartz, D. C. Lab Chip. 2009, 9, 2348.
- 23Ma, H.; Graham, M. D. Phys. Fluids. 2005, 17, 083103.
- 24Jendrejack, R. M.; Dimalanta, E. T.; Schwartz, D. C.; Graham, M. D.; de Pablo, J. J. Phys. Rev. Lett. 2003, 91, 038102.
- 25Jendrejack, R. M.; Schwartz, D. C.; De Pablo, J. J.; Graham, M. D. J. Chem. Phys. 2004, 120, 2513.
- 26Hernández-Ortiz, J. P.; Ma, H.; de Pablo, J. J.; Graham, M. D. Phys. Fluids. 2006, 18, 123101.
- 27Usta, O. B.; Ladd, A. J.; Butler, J. E. J. Chem. Phys. 2005, 122, 094902, 094902.
- 28Usta, O. B.; Butler, J. E.; Ladd, A. J. Phys. Fluids. 2006, 18, 031703, 031703.
- 29Khare, R.; Graham, M. D.; de Pablo, J. J. Phys. Rev. Lett. 2006, 96, 224505.
- 30Kohale, S. C.; Khare, R. J. Chem. Phys. 2009, 130, 104904.
- 31Fan, X.; Phan-Thien, N.; Yong, N. T.; Wu, X.; Xu, D. Phys. Fluids. 2003, 15, 11.
- 32Fedosov, D. A.; Karniadakis, G. E.; Caswell, B. J. Chem. Phys. 2008, 128, 144903.
- 33Millan, J. A.; Jiang, W.; Laradji, M.; Wang, Y. J. Chem. Phys. 2007, 126, 03B617.
- 34Millan, J. A.; Laradji, M. Macromolecules. 2009, 42, 803.
- 35Xu, S. F.; Wang, J. G. Acta Phys. Sin. 2013, 62, 124701.
10.7498/aps.62.124701 Google Scholar
- 36Xu, S. F.; Wang, J. G. Acta Polymer. Sin. 2015, 3, 346.
- 37Segre, G.; Silberberg, A. Nature. 1961, 189, 209.
- 38Santos de Oliveira, I.; Fitzgerald, B.; den Otter, W. K.; Briels, W. J. J. Chem. Phys. 2014, 104903, 140.
- 39Ahuja, V. R.; van der Gucht, J.; Briels, W. J. J. Chem. Phys. 2016, 145, 194903.
- 40Kitts, C. C.; Bout, D. A. V. Polymer. 2007, 48, 2322.
- 41Yu, W.; Luo, K. J. Chem. Phys. 2015, 142, 124901.
- 42Bian, Y.; Li, P.; Zhao, N. Chem. Phys. Lett. 2018, 703, 63.
- 43Kong, Y.; Manke, C.; Madden, W.; Schlijper, A. J. Chem. Phys. 1997, 107, 592.
- 44Yong, X. Polymer. 2016, 8, 426.
- 45Hoogerbrugge, P.; Koelman, J. Europhys. Lett. 1992, 19, 155.
- 46Espanol, P.; Warren, P. Europhys. Lett. 1995, 30, 191.
- 47Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423.
- 48Zhao, T.; Wang, X.; Jiang, L.; Larson, R. G. J. Rheol. 2014, 58, 1039.
- 49Litvinov, S.; Xie, Q.; Hu, X.; Adams, N.; Ellero, M. Fluids. 2016, 1, 7.
- 50Liu, M.; Liu, G.; Zhou, L.; Chang, J. Arch. Computat. Methods Eng. 2015, 22, 529.
- 51Español, P.; Warren, P. B. J. Chem. Phys. 2017, 146, 150901.
- 52Cao, Y.; Wang, B.; Yang, L.; Wang, Y.; Singh, G. K. J. Appl. Polym. Sci. 2015, 132, 41280.
- 53Nguyen, T. D.; Plimpton, S. J. Computat. Mater. Sci. 2015, 100, 173.
- 54Ye, T.; Phan-Thien, N.; Lim, C. T. J. Biomech. 2016, 49, 2255.
- 55Zhou, C.; Luo, S. K.; Sun, Y.; Zhou, Y.; Qian, W. J. Appl. Polym. Sci. 2016, 133, 44098.
- 56Wang, Y.; Chen, S.; Wu, B. Comput. Fluids. 2017, 154, 211.
- 57Fan, X.; Phan-Thien, N.; Chen, S.; Wu, X.; Ng, T. Y. Phys. Fluids. 2006, 18, 063102.
- 58Wedgewood, L. E.; Ostrov, D. N.; Bird, R. B. J. Non-Newton. Fluid Mech. 1991, 40, 119.
- 59Rapaport, D. C. The Art of Molecular Dynamics Simulation; Cambridge University Press: Cambridge, 2004; Chapter 3, p 49.