Electrochromism of novel triphenylamine-containing polyamide polymers
Fuhan Liu
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Search for more papers by this authorYaxin Zhang
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Search for more papers by this authorGuang Yu
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Search for more papers by this authorCorresponding Author
Yanjun Hou
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Correspondence to: Y. Hou (E-mail: [email protected]) and H. Niu (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Haijun Niu
Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of the People's Republic of China), Heilongjiang University, Harbin, 150080 People's Republic of China
Correspondence to: Y. Hou (E-mail: [email protected]) and H. Niu (E-mail: [email protected])Search for more papers by this authorFuhan Liu
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Search for more papers by this authorYaxin Zhang
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Search for more papers by this authorGuang Yu
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Search for more papers by this authorCorresponding Author
Yanjun Hou
Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 People's Republic of China
Correspondence to: Y. Hou (E-mail: [email protected]) and H. Niu (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Haijun Niu
Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of the People's Republic of China), Heilongjiang University, Harbin, 150080 People's Republic of China
Correspondence to: Y. Hou (E-mail: [email protected]) and H. Niu (E-mail: [email protected])Search for more papers by this authorABSTRACT
A series of novel polymers (coded as BCT-1 to BCT-6 (BTC is block triphenylamine)) based on N1-(4-aminophenyl)-N1-phenyl benzene-1,4-diamine, pyridine-2,6-dicarboxylic acid, 4,4′-(phenyl azanediyl)dibenzoic acid (PDA), and different diamine compounds were synthesized successfully through a polymer condensation reaction. For comparison, model polymers, BCT–2,6-pyridine dicarboxylic acid (PA) and BCT–PDA, were synthesized as well. The electrochromic properties of the BCTs were determined via an electrochemical workstation and a UV–visible spectrophotometer. Through electrooxidation, the polymer films showed reversible redox processes and steady color changes. In a comparision of the electrochromic characteristics of the BCTs, almost all the novel polymer films showed a better electrochromism stability, a higher electrochromic coloration efficiency (CE), and a more rapid switching time than BCT–PA and BCT–PDA. Among these polymers, BCT-1 exhibited the highest CE of 266.7 cm2/C, and BCT-4 showed the most rapid switching time (color switching time = 3.08 s and bleaching time = 2.01 s). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47264.
Supporting Information
Filename | Description |
---|---|
app47264-sup-0001-supinfo.docWord document, 27.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Yang, P.; Sun, P.; Mai, W. Mater. Today. 2016, 19, 394.
- 2Abraham, S.; Mangalath, S.; Sasikumar, D.; Joseph, J. Chem. Mater. 2017, 29, 9877.
- 3Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Chem. Mater. 2004, 16, 4401.
- 4Deb, S. K. Appl. Opt. 1969, 8, 192.
- 5Ma, D.; Shi, G.; Wang, H.; Zhang, Q.; Li, Y. Nanoscale. 2013, 5, 4808.
- 6Stolar, M.; Borau-Garcia, J.; Toonen, M.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 3366.
- 7Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; TenaZaera, R. ACS Appl. Mater. Interfaces. 2016, 8, 29619.
- 8Ortega, Á. M.; Trigo-López, M.; García, F. C.; Reglero, J. A.; García, J. M. Eur. Polym. J. 2017, 95, 119.
- 9San-José, N.; Gómez-Valdemoro, A.; Estevez, P.; García, F.; Serna, F.; García, J. M. Eur. Polym. J. 2008, 44, 3578.
- 10Wang, H.; Hsiao, S.; Liou, G. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4775.
- 11Shirota, Y. Mater. Chem. 2005, 15, 75.
- 12Liang, M.; Chen, J. Chem. Soc. Rev. 2013, 42, 3453.
- 13Ning, Z.; Tian, H. Chem. Commun. 2009, 41, 5483.
- 14Iwan, A.; Sek, D. Prog. Polym. Sci. 1277, 2011(36), 1277.
- 15Hsiao, S.; Liao, W.; Liou, G. Polym. Chem. 2018, 9, 236.
- 16Otero, L.; Sereno, L.; Fungo, F.; Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T. Chem. Mater. 2006, 18, 3495.
- 17Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Hwu, T.-Y.; Wong, K.-T. Macromolecules. 2007, 40, 4456.
- 18Tan, Y.; He, Y.; Yuan, D.; Zhang, J. Appl. Catal. B. 2018, 221, 664.
- 19Lian, S.; Zheng, W.; Jin, G.; Xiao, B.; Liu, Z.; Li, X.; Pan, Y.; Huang, J.; Hou, L.; Mo, Y.; Wu, H. Dyes Pigments. 2018, 149, 133.
- 20Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.
- 21Niu, H.; Huang, Y.; Bai, X.; Li, X. Mater. Lett. 2004, 58, 2979.
- 22Hsiao, S.; Liou, G.; Kung, Y.; Chang, Y. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 2798.
- 23Cai, J.; Niu, H.; Wang, C.; Ma, L.; Bai, X.; Wang, W. Electrochim. Acta. 2012, 76, 229.
- 24Hsiao, S.; Wang, H.; Liao, S. Polym. Chem. 2014, 5, 2473.
- 25Sun, N.; Feng, F.; Wang, D.; Zhou, Z.; Guan, Y.; Dang, G.; Zhou, H.; Chen, C.; Zhao, X. RSC Adv. 2015, 5, 88181.
- 26Chen, W.; Wang, K.; Lee, K. Macromolecules. 2010, 43, 2236.
- 27Li, W.; Michinobu, T. Polym. Chem. 2016, 7, 3165.
- 28Michinobu, T.; Osako, H.; Shigehara, K. Polymers. 2010, 2, 159.
- 29Duan, T.; Fan, K.; Zhong, C.; Chen, X.; Peng, T. J. Power Sources. 2013, 234, 23.
- 30Cai, S.; Wen, H.; Wang, S.; Niu, H.; Wang, C.; Jiang, X.; Bai, X. Electrochim. Acta. 2017, 228, 332.
- 31Portier, J.; Hilal, H. S.; Saadeddin, I.; Hwang, S. J.; Subramanian, M. A.; Campet, G. Prog. Solid State Chem. 2004, 32, 207.
- 32Sun, N.; Meng, S.; Chao, D.; Zhou, Z.; Du, Y.; Wang, D.; Zhao, X.; Zhou, H. Polym. Chem. 2016, 7, 6055.
- 33Nie, G.; Zhou, L.; Guo, Q.; Zhang, S. Electrochem. Commun. 2010, 12, 160.
- 34Wang, S.; Wu, X.; Zhang, X.; Niu, H.; Wang, C.; Bai, X. Eur. Polym. J. 2017, 93, 368.
- 35Wen, H.; Niu, H.; Li, B.; Ma, X.; Bai, X.; Wang, W. Synth. Met. 2015, 202, 89.
- 36Beaujuge, P. M.; Reynolds, J. R. Chem. Rev. 2010, 110, 268.