Heat-triggered poly(siloxane-urethane)s based on disulfide bonds for self-healing application
Xinxiu Wu
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
Search for more papers by this authorJinhui Li
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
Search for more papers by this authorGang Li
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Search for more papers by this authorLei Ling
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
Search for more papers by this authorCorresponding Author
Guoping Zhang
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Department of Electronic Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong, China
Correspondence to: G. Zhang (E-mail: [email protected])Search for more papers by this authorRong Sun
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Search for more papers by this authorChing-Ping Wong
Department of Electronic Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Search for more papers by this authorXinxiu Wu
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
Search for more papers by this authorJinhui Li
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
Search for more papers by this authorGang Li
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Search for more papers by this authorLei Ling
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
Search for more papers by this authorCorresponding Author
Guoping Zhang
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Department of Electronic Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong, China
Correspondence to: G. Zhang (E-mail: [email protected])Search for more papers by this authorRong Sun
Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Search for more papers by this authorChing-Ping Wong
Department of Electronic Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Search for more papers by this authorABSTRACT
Polydimethylsiloxane (PDMS) is one of the most widely employed silicon-based polymers for its high flexibility, low usage temperature, excellent water resistance, outstanding electrical insulting property, and physiological inert, etc. However, the covalent-bonded SiO bonds are unable to heal automatically when damaged, which would result in the failure of the materials and devices. Disulfide bond based polymers show high healing efficiency at moderate temperature and have been investigated intensively. Herein, we report a PDMS-based polyurethane self-healing polymer (PDMS-PU) modified with disulfide bonds, which exhibited a reinforced thermal stability, excellent stretchability, and satisfactory self-healing ability. The effect of different ratio of PDMS and disulfide bond contents on the elastomer properties was investigated. With the increase of PDMS content, the decomposition temperature of the PDMS-PU-3 (332 °C) elastomer with highest content of PDMS was increased by 34 °C compared to PDMS-PU-1 (298 °C) with lowest content of PDMS and exhibited a largest elongation at break of 1204%. PDMS-PU-1 with highest content of disulfide bond possessed a highest healing efficiency of 97%. The results indicated the PDMS-PU elastomers can be used as self-healing flexible substrate for flexible electronics. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46532.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app46532-sup-0001-suppinfo1.pdf352.2 KB |
Supporting Information 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1
Huynh, T. P.;
Sonar, P.;
Haick, H. Adv. Mater. 2017, 29, 19.
10.1002/adma.201604973 Google Scholar
- 2 Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. Nat. Chem. 2016, 8, 618.
- 3 Yang, Y.; Urban, M. W. Chem. Soc. Rev. 2013, 42, 7446.
- 4 Someya, T.; Bao, Z.; Malliaras, G. G. Nature 2016, 540, 379.
- 5 van der Kooij, H. M.; Susa, A.; Garcia, S. J.; van der Zwaag, S.; Sprakel, J. Adv. Mater. 2017, 29, 1701017.
- 6 Yang, J. X.; Long, Y. Y.; Pan, L.; Men, Y. F.; Li, Y. S. ACS Appl. Mater. Interfaces 2016, 8, 12445.
- 7 Han, Y.; Wu, X.; Zhang, X.; Lu, C. ACS Appl. Mater. Interfaces 2017, 9, 20106.
- 8 Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C. Nat. Commun. 2015, 6, 10310.
- 9 Chortos, A.; Liu, J.; Bao, Z. Nat. Mater. 2016, 15, 937.
- 10 Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. Nat. Nanotechnol. 2012, 7, 825.
- 11 Liu, C.; Ma, C.; Xie, Q.; Zhang, G. J. Mater. Chem. A 2017, 5, 15855.
- 12 Fang, Y.; Du, X.; Du, Z.; Wang, H.; Cheng, X. J. Mater. Chem. A 2017, 5, 8010.
- 13 Fox, C. H.; ter Hurrne, G. M.; Wojtecki, R. J.; Jones, G. O.; Horn, H. W.; Meijer, E. W.; Frank, C. W.; Hedrick, J. L.; García, J. M. Nat. Commun. 2015, 6, 7417.
- 14 Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Nat. Chem. 2012, 4, 467.
- 15 Kathan, M.; Kovaříček, P.; Jurissek, C.; Senf, A.; Dallmann, A.; Thünemann, A. F.; Hecht, S. Angew. Chem. Int. Ed. Engl. 2016, 55, 13882.
- 16 Wu, S.; Li, J.; Zhang, G.; Yao, Y.; Li, G.; Sun, R.; Wong, C. ACS Appl. Mater. Interfaces 2017, 9, 3040.
- 17 Otsuka, H. Polym. J. 2013, 45, 879.
- 18 Li, J.; Zhang, G.; Deng, L.; Zhao, S.; Gao, Y.; Jiang, K.; Sun, R.; Wong, C. J. Mater. Chem. A 2014, 2, 20642.
- 19 Zuo, Y.; Gou, Z.; Zhang, C.; Feng, S. Macromol. Rapid Commun. 2016, 37, 1052.
- 20 An, S. Y.; Arunbabu, D.; Noh, S. M.; Song, Y. K.; Oh, J. K. Chem. Commun. 2015, 51, 13058.
- 21 Matxain, J. M.; Asua, J. M.; Ruiperez, F. Phys. Chem. Chem. Phys. 2016, 18, 1758.
- 22 Nevejans, S.; Ballard, N.; Miranda, J. I.; Reck, B.; Asua, J. M. Phys. Chem. Chem. Phys. 2016, 18, 27577.
- 23 Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. Chem. Mater. 2014, 26, 2038.
- 24 Huynh, T. P.; Haick, H. Adv. Mater. 2016, 28, 138.
- 25 Xu, Y.; Chen, D. Macromol. Chem. Phys. 2016, 217, 1191.
- 26 Rao, Y. L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y. C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C.; He, M.; Chung, J. W.; Bao, Z. J. Am. Chem. Soc. 2016, 138, 6020.
- 27 Parajuli, P.; Allison, S. W.; Sabri, F. Meas. Sci. Technol. 2017, 28, 065101.
- 28 Qiu, S.; Bi, H.; Hu, X.; Wu, M.; Li, Y.; Sun, L. RSC Adv. 2017, 7, 10479.
- 29 Valentini, L.; Bittolo Bon, S.; Pugno, N. M. Compos. Sci. Technol. 2016, 134, 125.
- 30 Xue, L.; Zhang, Y.; Zuo, Y.; Diao, S.; Zhang, J.; Feng, S. Mater. Lett. 2013, 106, 425.
- 31 Xiang, H. P.; Rong, M. Z.; Zhang, M. Q. Polymer 2017, 108, 339.
- 32 Lee, D. H.; Heo, G.; Pyo, K. H.; Kim, Y.; Kim, J. W. ACS Appl. Mater Interfaces 2016, 8, 8129.
- 33 Zhang, B.; Zhang, P.; Zhang, H.; Yan, C.; Zheng, Z.; Wu, B.; Yu, Y. Macromol. Rapid Commun. 2017, 38, 1700110.
- 34 Zhang, L.; Chen, L.; Rowan, S. J. Macromol. Chem. Phys. 2017, 218, 1600320.
- 35 Houton, K. A.; Wilson, A. J. Polym. Int. 2015, 64, 165.
- 36 Zhao, J.; Xu, R.; Luo, G.; Wu, J.; Xia, H. Polym. Chem. 2016, 7, 7278.
- 37 Wan, T.; Chen, D. J. Mater. Sci. 2016, 52, 197.
- 38 Aguirresarobe, R. H.; Martin, L.; Fernandez-Berridi, M. J.; Irusta, L. eXPRESS Polym. Lett. 2017, 11, 266.
- 39 Hernández, M.; Grande, A. M.; Dierkes, W.; Bijleveld, J.; van der Zwaag, S.; García, S. J. ACS Sustain. Chem. Eng. 2016, 4, 5776.
- 40 Meléndez-Zamudio, M.; Villegas, A.; González-Calderón, J. A.; Meléndrez, R.; Meléndez-Lira, M.; Cervantes, J. J. Inorg. Organomet. Polym. Mater. 2017, 27, 622.
- 41 Fu, G.; Yuan, L.; Liang, G.; Gu, A. J. Mater. Chem. A 2016, 4, 4232.
- 42 Vandeputte, A. G.; Reyniers, M.-F.; Marin, G. B. Theor. Chem. Acc. 2009, 123, 391.
- 43 Xu, W. M.; Rong, M. Z.; Zhang, M. Q. J. Mater. Chem. A 2016, 4, 10683.
- 44 Baysal, B. M.; Uyanik, N.; Hamurcu, E. E.; Cvetkovska, M. J. Appl. Polym. Sci. 1996, 60, 1369.
- 45 Polmanteer, K. E. Rubber Chem. Technol. 1988, 61, 470.
- 46 Gao, W.; Bie, M.; Liu, F.; Chang, P.; Quan, Y. ACS Appl. Mater. Interfaces 2017, 9, 15798.
- 47 Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. Mater. Horiz. 2014, 1, 237.