Laccase-containing ureasil–polymer composite as the sensing layer of an amperometric biosensor
Corresponding Author
Taras Kavetskyy
Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
Correspondence to: T. Kavetskyy (E-mail: [email protected])Search for more papers by this authorOleh Smutok
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorMykhailo Gonchar
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorOlha Demkiv
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorHalyna Klepach
Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorYuliia Kukhazh
Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
Search for more papers by this authorOndrej Šauša
Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovak Republic
Search for more papers by this authorTamara Petkova
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Search for more papers by this authorVictor Boev
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Search for more papers by this authorVania Ilcheva
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Search for more papers by this authorPlamen Petkov
Thin Films Technology Laboratory, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
Search for more papers by this authorAndrey L. Stepanov
Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029 Kazan, Russian Federation
Search for more papers by this authorCorresponding Author
Taras Kavetskyy
Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
Correspondence to: T. Kavetskyy (E-mail: [email protected])Search for more papers by this authorOleh Smutok
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorMykhailo Gonchar
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorOlha Demkiv
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorHalyna Klepach
Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
Search for more papers by this authorYuliia Kukhazh
Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
Search for more papers by this authorOndrej Šauša
Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovak Republic
Search for more papers by this authorTamara Petkova
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Search for more papers by this authorVictor Boev
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Search for more papers by this authorVania Ilcheva
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Search for more papers by this authorPlamen Petkov
Thin Films Technology Laboratory, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
Search for more papers by this authorAndrey L. Stepanov
Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029 Kazan, Russian Federation
Search for more papers by this authorABSTRACT
Innovative amperometric biosensors for monitoring the level of wastewater pollution have been constructed on the surface of the gold planar electrodes C220AT “DropSens” by using the organic–inorganic ureasil-based composites as host matrixes and immobilized commercial laccase from Trametes versicolor. It was found that the biosensor based on the ureasil–chalcogenide glass composite is characterized by a very high sensitivity (67,540 А M−1 m−2) that is 38.3 times higher than for pure ureasil (the sensitivity of the bioelectrode was calculated as 1762 А M−1 m−2). On the other hand, application of the ureasil–chalcogenide glass composite with incorporated silver nanoparticles (NPs) synthesized by high-dose (1.0 × 1017 Ag+/cm2) 30 keV Ag+ ion implantation results in decreasing the biosensor sensitivity up to 2390 times (the sensitivity of the bioelectrode was 28.3 А M−1 m−2). The role of additives (chalcogenide glass and silver NPs) in the ureasil matrix on the biofunctionality of the biosensors produced is considered. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45278.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app45278-sup-0001-suppinfo.pdf382.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Danzo, B. J. Cell. Mol. Life Sci. 1998, 54, 1249.
- 2 Roy, J. R.; Chakraborty, S.; Chakraborty, T. R. Med. Sci. Monit. 2009, 15, 137.
- 3 Rozati, R.; Reddy, P. P.; Reddanna, P.; Mujtaba, R. Fertil. Steril. 2002, 78, 1187.
- 4 Aravindakshan, J.; Paquet, V.; Gregory, M.; Dufresne, J.; Fournier, M.; Marcogliese, D. J.; Cyr, D. G. Toxicol. Sci. 2004, 78, 156.
- 5 Patisaul, H. B.; Adewale, H. B. Front. Behav. Neurosci. 2009, 3, 10.
- 6 Watson, C. S.; Jeng, Y. J.; Guptarak, J. J. Steroid Biochem. Mol. Biol. 2011, 127, 44.
- 7vom Saal, F. S.; Hughes, C. Environ. Health Perspect. 2005, 113, 926.
- 8 Oehlmann, J.; Schulte-Oehlmann, U. Pure Appl. Chem. 2003, 75, 2207.
- 9 Contardo-Jara, V.; Lorenz, C.; Pflugmacher, S.; Nützmann, G.; Kloas, W.; Wiegand, C. Aquat. Toxicol. 2011, 105, 428.
- 10 Zhou, Y.; Wang, L.; Liu, J.; Li, W.; Zheng, J. China, Phys. Chem. Earth 2012, 47–48, 99.
- 11 Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Cell. Mol. Life Sci. 2010, 67, 369.
- 12 Arca-Ramos, A.; Ammann, E. M.; Gasser, C. A.; Nastold, P.; Eibes, G.; Feijoo, G.; Lema, J. M.; Moreira, M. T.; Corvini, P. F.-X. Environ. Sci. Pollut. Res. 2015, DOI: 10.1007/s11356-015-5564-6.
- 13 Boev, V. I.; Silva, C. J. R.; Hungerford, G.; Gomes, M. J. M. J. Sol-Gel Sci. Technol. 2004, 31, 131.
- 14 Boev, V. I.; Soloviev, A.; Silva, C. J. R.; Gomes, M. J. M.; Barber, D. J. J. Sol-Gel Sci. Technol. 2007, 41, 223.
- 15 Kavetskyy, T.; Lyadov, N.; Valeev, V.; Tsmots, V.; Petkova, T.; Boev, V.; Petkov, P.; Stepanov, A. L. Phys. Status Solidi C 2012, 9, 2444.
- 16 Kavetskyy, T.; Šauša, O.; Krištiak, J.; Petkova, T.; Petkov, P.; Boev, V.; Lyadov, N.; Stepanov, A. Mater. Sci. Forum 2013, 733, 171.
- 17 Sá Ferreira, R. A.; Carlos, L. D.; Gonçalves, R. R.; Ribeiro, S. J. L. Chem. Mater. 2001, 13, 2991.
- 18de Zea Bermudez, V.; Alcácer, L.; Acosta, J. L.; Morales, E. Solid State Ionics 1990, 116, 197.
- 19 Stathatos, E.; Lianos, P.; Stangar, U. L.; Orel, B.; Judeinstein, P. Langmuir 2000, 16, 8672.
- 20 Boev, V.; Soloviev, A.; Silva, C. J. R.; Gomes, M. J. M. Solid State Sci. 2006, 8, 50.
- 21 Boev, V.; Pérez-Juste, J.; Pastoriza-Santos, I.; Silva, C. J. R.; Gomes, M. J. M.; Liz-Marzán, L. M. Langmuir 2004, 20, 10268.
- 22 Tarasevich, M. R.; Yaropolov, A. I.; Bogdanovskaya, V. A.; Varfolomeev, S. D.; Bioelectrochem. Bioenerg. 1979, 6, 393.
- 23 Mishra, A.; Kumar, S. Biochem. Eng. J. 2009, 46, 252.
- 24 Yang, Y.; Ding, Y.; Liao, X.; Cai, Y. Process Biochem. 2013, 48, 351.
- 25 Wu, Y. R.; Luo, Z. H.; Kwok-Kei Chow, R.; Vrijmoed, L. L. Biores. Technol. 2010, 101, 9772.