Encapsulation of salicylic acid in acylated low molecular weight chitosan for sustained release topical application
Shu Xian Tiew
Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Misni Misran
Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence to: M. Misran (E-mail: [email protected])Search for more papers by this authorShu Xian Tiew
Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Misni Misran
Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence to: M. Misran (E-mail: [email protected])Search for more papers by this authorABSTRACT
Acylated low molecular weight chitosan was used to encapsulate salicylic acid (SA) for sustained release in topical delivery. Chitosan nanoparticles were prepared from the depolymerization of commercial chitosan and further acylated with short alkyl chains. The successful acylation of butyryl chitosan [low molecular weight chitosan (LMWC)-B] were proved by Fourier transform infrared (FTIR) and 1H-NMR. Successful encapsulation of SA was observed by the shift of amide I band from 1648 cm−1 in LMWC-B to 1641–1633 cm−1 in SA-loaded LMWC-B in FTIR analysis, which further confirmed with the size increment from dynamic light scattering and transmission electron microscopy analyses by comparing its unencapsulated LMWC-B. SA release from LMWC-B studied by Franz diffusion experiment followed Korsmeyer–Peppas model where the release component n value (0.502) indicated diffusion and polymer swelling were involved in release mechanism. The slow release study of SA showed the acylated chitosan exhibited sustained release property toward SA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45273.
REFERENCES
- 1 Panyam, J.; Labhasetwar, V. Adv. Drug Deliv. Rev. 2003, 55, 329.
- 2 Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Adv. Drug Deliv. Rev. 2008, 60, 1650.
- 3 Thakur, K.; Geeta, A.; Kumar, H. S. L. World J. Pharm. Pharm. Sci. 2016, 5, 708.
- 4 Tang, D. L.; Song, F.; Chen, C.; Wang, X. L.; Wang, Y. Z. Nanotechnology 2013, 24, 145101.
- 5 Mourya, V. K.; Inamdar, N. N. React. Funct. Polym. 2008, 68, 1013.
- 6 Yen, M. T.; Yang, J. H.; Mau, J. L. Carbohydr. Polym. 2008, 74, 840.
- 7 Tsai, G. J.; Su, W. H.; Chen, H. C.; Pan, C. L. Fish. Sci. 2002, 68, 170.
- 8 Ing, L. Y.; Zin, N. M.; Sarwar, A.; Katas, H. Int. J. Biomater. 2012, 2012, 9.
- 9 Howling, G. I.; Dettmar, P. W.; Goddard, P. A.; Hampson, F. C.; Dornish, M.; Wood, E. J. Biomaterials 2001, 22, 2959.
- 10 Harish Prashanth, K. V.; Tharanathan, R. N. Trends Food Sci. Technol. 2007, 18, 117.
- 11 Wang, Y. S.; Liu, L. R.; Jiang, Q.; Zhang, Q. Q. Eur. Polym. J. 2007, 43, 43.
- 12 Guo, H.; Zhang, D.; Li, C.; Jia, L.; Liu, G.; Hao, L.; Zheng, D.; Shen, J.; Li, T.; Guo, Y.; Zhang, Q. Int. J. Pharm. 2013, 458, 31.
- 13 Zhang, C.; Qineng, P.; Zhang, H. Colloids Surf. B Biointerfaces 2004, 39, 69.
- 14 Quinones, J. P.; Gothelf, K. V.; Kjems, J.; Caballero, Á. M. H.; Schmidt, C.; Covas, C. P. Carbohydr. Polym. 2013, 91, 143.
- 15 Kim, J. H.; Kim, Y. S.; Kim, S.; Park, J. H.; Kim, K.; Choi, K.; Chung, H.; Jeong, S. Y.; Park, R. W.; Kim, I. S.; Kwon, I. C. J. Control. Release 2006, 111, 228.
- 16 Moazeni, E.; Gilani, K.; Najafabadi, A. R.; reza Rouini, M.; Mohajel, N.; Amini, M.; Barghi, M. A. J. Pharm. Sci. 2012, 20, 85.
- 17 Zhang, N.; Wardwell, P.; Bader, R. Pharmaceutics 2013, 5, 329.
- 18 Walters, R. M.; Mao, G.; Gunn, E. T.; Hornby, S. Dermatol. Res. Pract. 2012, 2012, 9.
- 19 Draelos, Z.; Hornby, S.; Walters, R. M.; Appa, Y. J. Cosmet. Dermat. 2013, 12, 314.
- 20
Morgan, S. E.;
Lochhead, R. Y. In Polymeric Delivery of Therapeutics; M. J. Fevola; R. M. Walters; J. J. LiBrizzi, Eds.; ACS Symposium Series 1053; American Chemical Society: Washington, DC, 2010; Chapter 12, p 221.
10.1021/bk-2010-1053 Google Scholar
- 21 Corazza, M.; Lauriola, M. M.; Zappaterra, M.; Bianchi, A.; Virgili, A. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 1.
- 22 Effendy, I.; Maibach, H. I. Contact Derm. 1995, 33, 217.
- 23 Wilhelm, K. P.; Bottjer, B.; Siegers, C. P. Br. J. Dermatol. 2001, 145, 709.
- 24 Ahuja, M.; Dhake, A. S.; Sharma, S. K.; Majumdar, D. K. AAPS J. 2008, 10, 229.
- 25 Fabbrocini, G.; Annunziata, M. C.; D'Arco, V.; De Vita, V.; Lodi, G.; Mauriello, M. C.; Pastore, F.; Monfrecola, G. Dermatol. Res. Pract. 2010, 2010, 893080.
- 26 Madan, R. K.; Levitt, J. J. Am. Acad. Dermatol. 2014, 70, 788.
- 27 Bhalerao, S. S.; Raje Harshal, A. Drug Dev. Ind. Pharm. 2003, 29, 451.
- 28 Wang, Q.; Zhang, N.; Hu, X.; Yang, J.; Du, Y. J. Biomed. Mater. Res. A 2008, 85, 881.
- 29 Boonsongrit, Y.; Mitrevej, A.; Mueller, B. W. Eur. J. Pharm. Biopharm. 2006, 62, 267.
- 30 Wang, Q.; Zhang, N.; Hu, X.; Yang, J.; Du, Y. Eur. J. Pharm. Biopharm. 2007, 66, 398.
- 31 Puttipipatkhachorn, S.; Nunthanid, J.; Yamamoto, K.; Peck, G. E. J. Control. Release 2001, 75, 143.
- 32 da Silva, R. M.; Caridade, S. G.; San Roman, J.; Mano, J. F.; Reis, R. L. Biomacromolecules 2008, 9, 2132.
- 33 Yang, Z.; Fang, Y.; Ji, H. Chin. J. Chem. Eng. 2016, 24, 421.
- 34 MojtabaTaghizadeh, S.; Javan Raveled, S. e-Polymer 2010, 370.
- 35 Liu, C.; Wu, Y.; Zhao, L.; Huang, X. Int. J. Biol. Macromol. 2015, 78, 189.
- 36 Voon, S. H.; Tiew, S. X.; Kue, C. S.; Lee, H. B.; Kiew, L. V.; Misran, M.; Kamkaew, A.; Burgess, K.; Chung, L. Y. J. Biomed. Nanotechnol. 2016, 12, 1431.
- 37 Prakash, K.; Raju, P. N.; Kumari, K. S.; Narasu, M. L. Eur. J. Chem. 2008, 5, 1159.
- 38 Kasaai, M. R. Carbohydr. Polym. 2008, 71, 497.
- 39 Khan, T. A.; Peh, K. K.; Ch'ng, H. S. J. Pharm. Pharm. Sci. 2002, 5, 205.
- 40 Costa, P.; Sousa Lobo, J. M. Eur. J. Pharm. Sci. 2001, 13, 123.
- 41 Li, J.; Du, Y.; Liang, H. J. Appl. Polym. Sci. 2006, 102, 1098.
- 42 Kubota, N.; Tatsumoto, N.; Sano, T.; Toya, K. Carbohydr. Res. 2000, 324, 268.
- 43 Hirano, S.; Yamaguchi, Y.; Kamiya, M. Carbohydr. Polym. 2002, 48, 203.
- 44 Shelma, R.; Sharma, C. P. Colloids Surf. B: Biointerfaces 2011, 84, 561.
- 45 Rumengan, I.; Suryanto, E.; Modaso, R.; Wullur, S.; Tallei, T.; Limbong, D. Int. J. Fish. Aquat. Sci. 2014, 3, 12.
- 46 Focher, B.; Naggi, A.; Torri, G.; Cosani, A.; Terbojevich, M. Carbohydr. Polym. 1992, 18, 43.
- 47 Lao, S. B.; Zhang, Z. X.; Xu, H. H.; Jiang, G. B. Carbohydr. Polym. 2010, 82, 1136.
- 48 Le Tien, C.; Lacroix, M.; Ispas-Szabo, P.; Mateescu, M. A. J. Control. Release 2003, 93, 1.
- 49 Chiandotti, R. S.; Rodrigues, P. C.; Akcelrud, L. J. Braz. Chem. Soc. 2010, 21, 1910.
- 50 Liu, G.; Gan, J.; Chen, A.; Liu, Q.; Zhao, X. Nat. Sci. 2010, 2, 707.
- 51 He, G.; Chen, X.; Yin, Y.; Zheng, H.; Xiong, X.; Du, Y. Carbohydr. Polym. 2011, 83, 1274.
- 52 Barry, J. E.; Finkelstein, M.; Ross, S. D. Tetrahedron 1976, 32, 223.
- 53 Peniche, C.; Elvira, C.; San Roman, J. Polymer 1998, 39, 6549.
- 54 Jiang, G.-B.; Lin, Z.-T.; Xu, X.-J.; Hai, Z.; Song, K. Carbohydr. Polym. 2012, 88, 232.
- 55 Balan, V.; Dodi, G.; Tudorachi, N.; Ponta, O.; Simon, V.; Butnaru, M.; Verestiuc, L. Chem. Eng. J. 2015, 279, 188.
- 56 Zhang, C.; Ping, Q.; Zhang, H.; Shen, J. Carbohydr. Polym. 2003, 54, 137.
- 57 Tan, H. W.; Misran, M. Int. J. Pharm. 2013, 441, 414.
- 58 Jiang, G.-B.; Quan, D.; Liao, K.; Wang, H. Carbohydr. Polym. 2006, 66, 514.
- 59 Al-Sou'od, K.; Abu-Falaha, R.; Al-Remawi, M. Jordan J. Chem. 2013, 8, 1.
- 60 Mekhail, G. M.; Kamel, A. O.; Awad, G. A. S.; Mortada, N. D. Int. J. Biol. Macromol. 2012, 51, 351.
- 61 Hu, F. Q.; Ren, G. F.; Yuan, H.; Du, Y. Z.; Zeng, S. Colloids Surf. B: Biointerfaces 2006, 50, 97.
- 62 Wei, X. H.; Niu, Y. P.; Xu, Y. Y.; Du, Y. Z.; Hu, F. Q.; Yuan, H. J. Bioact. Compat. Polym. 2010, 25, 319.
- 63 Kim, D. G.; Jeong, Y. I.; Choi, C.; Roh, S. H.; Kang, S. K.; Jang, M. K.; Nah, J. W. Int. J. Pharm. 2006, 319, 130.
- 64 Lee, S. J.; Min, H. S.; Ku, S. H.; Son, S.; Kwon, I. C.; Kim, S. H.; Kim, K. Nanomedicine 2014, 9, 1697.
- 65 Huh, K. M.; Lee, S. C.; Cho, Y. W.; Lee, J.; Jeong, J. H.; Park, K. J. Control. Release 2005, 101, 59.
- 66 Wang, X. Y.; Zhang, L.; Wei, X. H.; Wang, Q. Biomaterials 2013, 34, 1843.
- 67 Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. J. Nanomater. 2013, 313081.
- 68
Carbinatto, F. M.;
de Castro, A. D.;
Evangelista, R. C.;
Cury, B. S. F. Asian J. Pharm. Sci. 2014, 9, 27.
10.1016/j.ajps.2013.12.002 Google Scholar
- 69
Macheras, P.;
Iliadis, A. Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics: Homogeneous and Heterogeneous Approaches; Springer-Verlag: New York, 2016.
10.1007/978-3-319-27598-7 Google Scholar