Structural, mechanical, and thermal properties of 3D printed L-CNC/acrylonitrile butadiene styrene nanocomposites
Xinhao Feng
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 People's Republic of China
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Search for more papers by this authorZhaozhe Yang
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 People's Republic of China
Search for more papers by this authorSahar S. H. Rostom
Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996
Search for more papers by this authorMark Dadmun
Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996
Search for more papers by this authorCorresponding Author
Yanjun Xie
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 People's Republic of China
Correspondence to: S. Wang (E-mail: [email protected]) and Y. Xie (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Siqun Wang
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: S. Wang (E-mail: [email protected]) and Y. Xie (E-mail: [email protected])Search for more papers by this authorXinhao Feng
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 People's Republic of China
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Search for more papers by this authorZhaozhe Yang
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 People's Republic of China
Search for more papers by this authorSahar S. H. Rostom
Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996
Search for more papers by this authorMark Dadmun
Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996
Search for more papers by this authorCorresponding Author
Yanjun Xie
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 People's Republic of China
Correspondence to: S. Wang (E-mail: [email protected]) and Y. Xie (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Siqun Wang
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: S. Wang (E-mail: [email protected]) and Y. Xie (E-mail: [email protected])Search for more papers by this authorABSTRACT
3D printing has been extensively applied in human-related activities, and therefore the 3D printed nanocomposites became more popular and important in end-use products. In the present study, we use lignin-coated cellulose nanocrystal (L-CNC) to reinforce 3D printed acrylonitrile butadiene styrene (ABS) and explore the effect of L-CNC on the structural, mechanical, and thermal properties of 3D printed L-CNC/ABS nanocomposites. The results indicate that the addition of L-CNC foams the ABS and decreases the density of 3D printed L-CNC/ABS nanocomposites. However, the tensile modulus and storage modulus increase by adding 4% L-CNC. The thermal stability of 3D printed L-CNC/ABS nanocomposites is also significantly improved as indicated by an increase in the maximum degradation temperature. The morphology of the nanocomposites reveals good dispersion and interfacial adhesion between L-CNC and ABS. The finding indicates that the 3D printed nanocomposites become lighter and stiffer with addition of L-CNC, which will have great potential to be applied in end-use products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45082.
REFERENCES
- 1 Vaezi, M.; Seitz, H.; Yang, S. Int. J. Adv. Manuf. Technol. 2013, 67, 1721.
- 2 D'aveni, R. A. Harvard Bus. Rev. 2013, 91, 34.
- 3 Espalin, D.; Muse, D. W.; MacDonald, E.; Wicker, R. B. Int. J. Adv. Manuf. Technol. 2014, 72, 963.
- 4
Cignoni, P.;
Scopigno, R. ACM J. Comput. Cult. Heritage 2008, 1, 1.
10.1145/1367080.1367082 Google Scholar
- 5 Krawczak, P. eXPRESS Polym. Lett. 2015, 9, 959.
- 6 Rosenzweig, D. H.; Carelli, E.; Steffen, T.; Jarzem, P.; Haglund, L. Int. J. Mol. Sci. 2015, 16, 15118.
- 7 Jiang, L.; Lam, Y.; Tam, K.; Chua, T.; Sim, G.; Ang, L. Polymer 2005, 46, 243.
- 8 Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Compos. Part B Eng. 2015, 80, 369.
- 9 Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Mater. Sci. Eng. A Struct. 2001, 301, 125.
- 10
Perez, A. R. T.;
Roberson, D. A.;
Wicker, R. B. J. Fail. Anal. Prev. 2014, 14, 343.
10.1007/s11668-014-9803-9 Google Scholar
- 11 Ma, L.; Zhang, Y.; Meng, Y.; Anusonti-Inthra, P.; Wang, S. Carbohydr. Polym. 2015, 125, 352.
- 12 Ma, L.; Zhang, Y.; Wang, S. Polym. Compos. 2015, DOI: 10.1002/pc.23827.
- 13 Peponi, L.; Puglia, D.; Torre, L.; Valentini, L.; Kenny, J. M. Mater. Sci. Eng. R 2014, 85, 1.
- 14 Shofner, M.; Lozano, K.; Rodríguez-Macías, F.; Barrera, E. J. Appl. Polym. Sci. 2003, 89, 3081.
- 15 Carneiro, O.; Silva, A.; Gomes, R. Mater. Design 2015, 83, 768.
- 16 Schorning, P. Faserforsch. Textiltech. 1957, 8, 487.
- 17 Sklavounos, E.; Iakovlev, M.; Survase, S.; Granström, T.; van Heiningen, A. Bioresour. Technol. 2013, 147, 102.
- 18 Iakovlev, M.; van Heiningen, A. RSC Adv. 2012, 2, 3057.
- 19 Nair, S. S.; Yan, N. Cellulose 2015, 22, 3137.
- 20 Rojo, E.; Peresin, M. S.; Sampson, W. W.; Hoeger, I. C.; Vartiainen, J.; Laine, J.; Rojas, O. J. Green Chem. 2015, 17, 1853.
- 21 Spence, K. L.; Venditti, R. A.; Habibi, Y.; Rojas, O. J.; Pawlak, J. J. Bioresour. Technol. 2010, 101, 5961.
- 22
Kang, D. H.;
Choi, J. C.;
Choi, J. M.;
Kim, T. W. Trans. Electric. Electron. Mater. 2010, 11, 174.
10.4313/TEEM.2010.11.4.174 Google Scholar
- 23 Murray, R. E.; Weller, J. E.; Kumar, V. Cell Polym. 2000, 19, 413.
- 24 Martini-Vvedensky, J.; Waldman, F.; Suh, N. SPE ANTEC Tech. Papers 1982, 28, 674.
- 25 Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. Eur. Polym. J. 2015, 65, 209.
- 26 Martini-Vvedensky, J.; Waldman, F.; Suh, N. SPE ANTEC Tech. Papers 1982, 28, 674.
- 27 Gandhi, A.; Bhatnagar, N. Cell Polym. 2015, 34, 1.
- 28 Gandhi, A.; Asija, N.; Gaur, K. K.; Rizvi, S. J. A.; Tiwari, V.; Bhatnagar, N. Mater. Lett. 2013, 94, 76.
- 29 Mahmoodi, M.; Behravesh, A. H. Iran. Polym. J. 2007, 16, 839.
- 30 Torrado, A. R.; Shemelya, C. M.; English, J. D.; Lin, Y.; Wicker, R. B.; Roberson, D. A. Addit. Manuf. 2015, 6, 16.
- 31 Cordero, A. I.; Amalvy, J. I.; Fortunati, E.; Kenny, J. M.; Chiacchiarelli, L. M. Carbohydr. Polym. 2015, 134, 110.
- 32 Tsuchiya, A.; Tateyama, H.; Kikuchi, T.; Takahashi, T.; Koyama, K. Polym. J. 2007, 39, 514.
- 33 Lin, X.; Sui, S.; Tan, S.; Pittman, C. U.; Sun, J.; Zhang, Z. Energies 2015, 8, 5107.
- 34 Alberti, G.; Casciola, M. Solid State Ionics 2001, 145, 3.
- 35 Threepopnatkul, P.; Teppinta, W.; Sombatsompop, N. Fiber Polym. 2011, 12, 1007.
- 36 Yeh, S.-K.; Agarwal, S.; Gupta, R. K. Compos. Sci. Technol. 2009, 69, 2225.
- 37 Song, P.; Cao, Z.; Meng, Q.; Fu, S.; Fang, Z.; Wu, Q.; Ye, J. J. Macromol. Sci. Phys. 2012, 51, 720.
- 38 Wang, J.; Li, Y.; Song, J.; He, M.; Song, J.; Xia, K. Polym. Degrad. Stab. 2015, 112.
- 39 Sousa Mol, A.; Martins, I.; Oréfice, R. L. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/app.42463.
- 40 Fortunati, E.; Puglia, D.; Monti, M.; Santulli, C.; Maniruzzaman, M.; Kenny, J. M. J. Appl. Polym. Sci. 2013, 128, 3220.
- 41 Song, P.; Cao, Z.; Fu, S.; Fang, Z.; Wu, Q.; Ye, J. Thermochim. Acta 2011, 518, 59.