Noncovalent functionalization of carbon nanotube using poly(vinylcarbazole)-based compatibilizer for reinforcement and conductivity improvement in epoxy composite
Ren Liu
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorYaxin Chen
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorQiang Ma
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorCorresponding Author
Jing Luo
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Correspondence to: J. Luo (E-mail: [email protected])Search for more papers by this authorWei Wei
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorXiaoya Liu
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorRen Liu
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorYaxin Chen
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorQiang Ma
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorCorresponding Author
Jing Luo
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Correspondence to: J. Luo (E-mail: [email protected])Search for more papers by this authorWei Wei
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorXiaoya Liu
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorABSTRACT
A new compatibilizer [P(GMA-co-VCz) copolymer] containing carbazole moiety and reactive epoxide group, which can functionalize multiwalled carbon nanotubes (MWCNTs) for making superior epoxy composites, was prepared by a simple one-pot free radical polymerization. The designed compatibilizer could noncovalently functionalize multiwalled carbon nanotube (MWCNTs) via π-π interaction as evidenced from fluorescence, Raman, and FTIR spectra analysis, and efficiently disperse MWCNTs in organic solvents. TEM images suggest a good wrapping of P(GMA-co-VCz) on MWCNTs surface. P(GMA-co-VCz) functionalized MWCNTs were more homogeneously dispersed in epoxy matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between MWCNTs and epoxy resin. In addition, the presence of epoxide groups in compatibilizer could generate covalent bonds with the epoxy matrix and improve the interface interaction between MWCNTs and epoxy matrix. As a result, mechanical and electrical properties of the epoxy composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. The addition of as little as 0.15 wt % of MWCNTs to epoxy matrix affords a great increase of 40% in storage modulus and 52.5% in elongation at break. Furthermore, a sharp decrease of almost 9 orders of magnitude in volume resistivity of epoxy composite is observed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45022.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app45022-sup-0001-suppinfo.pdf1,020.2 KB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
- 2 Wei, Y.; Mary, B. ACS Appl. Mater. Interfaces 2012, 4, 2065.
- 3 Chen, Y.; Tao, J.; Li, S.; Khashab, N. M. ACS Appl. Mater. Interfaces 2014, 6, 9013.
- 4 Blake, R.; Coleman, J. N.; Byrne, M. T.; McCarthy, J. E.; Perova, T. S.; Blau, W. J.; Fonseca, A.; Nagy, J. B.; Gun'ko, Y. K. J. Mater. Chem. 2006, 6, 4206.
- 5
Hirsch, A. Angew. Chem. Int. Ed. Engl. 2002, 41, 1853.
10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 6 Balasubramanian, K.; Burghard, M. Small 2005, 1, 180.
- 7 Tour, J. M. Chem. Eur. J. 2004, 10, 812.
- 8 Bilalis, P.; Katsigiannopoulos, D.; Avgeropoulos, A.; Sakellariou, G. RSC Adv. 2014, 4, 2911.
- 9 Kie, Y. C.; Yong, S. Y.; Heun, Y. S.; Young, H. P.; Ha, N. J.; Kyung, Y. B.; Ho, G. Y. ACS Appl. Mater. Interfaces 2015, 7, 9841.
- 10 Liu, R.; Zeng, X. B.; Liu, J. C.; Zheng, X. Y.; Luo, J.; Liu, X. Y. J. Mater. Chem. A 2014, 2, 14481.
- 11 Fei, X.; Luo, J.; Liu, R.; Liu, J. C.; Liu, X. Y.; Chen, M. Q. RSC Adv. 2015, 5, 18233.
- 12 Amit, M.; Arun, K. ACS Appl. Mater. Interfaces 2013, 5, 747.
- 13 Yao, X. P.; Li, J.; Kong, L.; Wang, Y. Nanotechnology 2015, 26, 1502.
- 14 Meuer, S.; Braun, L.; Schilling, T.; Zentel, R. Polymer 2009, 50, 154.
- 15 Zou, J.; Liu, L.; Chen, H.; Khondaker, S. I.; McCullough, R. D.; Huo, Q.; Zhai, L. Adv. Mater. 2008, 20, 2055.
- 16 Ezzeddine, A.; Chen, Z.; Schanze, K. S.; Khashab, N. M. ACS Appl. Mater. Interfaces 2015, 7, 12903.
- 17 Cho, K. Y.; Lee, Y. J.; Kim, H. J.; Yoon, H. G.; Hwang, S. S.; Han, Y. K.; Baek, K. Y. Polymer 2015, 77, 55.
- 18 Yang, Z.; Xue, Z.; Liao, Y.; Zhou, X.; Zhou, J.; Zhu, J.; Xie, X. Langmuir 2013, 29, 3757.
- 19 Mandal, A.; Nandi, A. K. J. Phys. Chem. C 2012, 116, 9360.
- 20 Kim, K. T.; Jo, W. H. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4184.
- 21 Yang, Z.; McElrath, K.; Bahr, J.; D'Souza, N. A. Compos. B 2012, 43, 2079.
- 22 Cui, L. J.; Geng, H. Z.; Wang, W. Y.; Chen, L. T.; Gao, J. Carbon 2013, 54, 277.
- 23 Gupta, M. L.; Sydlik, S. A.; Schnorr, J. M.; Woo, D. J.; Osswald, S.; Swager, T. M.; Raghavan, D. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 410.
- 24 Guadagno, L.; De Vivo, B.; Di Bartolomeo, A.; Lamberti, P.; Sorrentino, A.; Tucci, V.; Vertuccio, L.; Vittoria, V. Carbon 2011, 49, 1919.
- 25 Loos, M. R.; Yang, J.; Feke, D. L.; Manas-Zloczower, I. Compos. Sci. Technol. 2012, 72, 482.
- 26 Montazeri, A.; Montazeri, N. Mater. Des. 2011, 32, 2301.
- 27 Yan, Y.; Cui, J.; Zhao, S.; Zhang, J.; Liu, J.; Cheng, J. J. Mater. Chem. 2012, 22, 1928.
- 28 Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y. W. Carbon 2011, 49, 495.
- 29 Saeb, M. R.; Najafi, F.; Bakhshandeh, E.; Khonakdar, H. A.; Mostafaiyan, M.; Simon, F.; Scheffler, C.; Mäder, E. Chem. Eng. J. 2015, 259, 117.
- 30 Wang, X.; Xing, W.; Feng, X.; Yu, B.; Lu, H.; Song, L.; Hu, Y. Chem. Eng. J. 2014, 250, 214.
- 31 Chatterjee, S.; Wang, J. W.; Kuo, W. S.; Tai, N. H.; Salzmann, C.; Li, W. L.; Hollertz, R.; Nüesch, A. F.; Chu, B. T. T. Chem. Phys. Lett. 2012, 531, 6.
- 32 Wan, Y. J.; Tang, L. C.; Gong, L. X.; Yan, D.; Li, Y. B.; Wu, L. B.; Jiang, J. X.; Lai, G. Q. Carbon 2014, 69, 467.
- 33 Ma, Q.; Luo, J.; Chen, Y.; Wei, W.; Liu, R.; Liu, X. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 2776.
- 34 Jlassi, K.; Chandran, S.; Mičušik, M.; Benna-Zayani, M.; Yagci, Y.; Thomas, S.; Chehimi, M. M. Eur. Polym. J. 2015, 72, 89.
- 35 Ye, W.; Wei, W.; Fei, X.; Lu, R.; Liu, N.; Luo, J.; Zhu, Y.; Liu, X. J. Appl. Polym. Sci. 2017, 134, DOI: 10.1002/app.44384.
- 36 Singh, D. K.; Iyer, P. K.; Giri, P. K. Carbon 2012, 50, 4495.
- 37 Liu, Y.; Huang, J.; Sun, M. J.; Yu, J. C.; Chen, Y. L.; Zhang, Y. Q.; Jiang, S. J.; Shen, Q. D. Nanoscale 2014, 6, 1480.
- 38 Dong, B.; Su, Y.; Liu, Y.; Yuan, J.; Xu, J.; Zheng, L. J. Colloid Interface Sci. 2011, 356, 190.
- 39 Li, H.; Cooper-White, J. J. Nanoscale 2013, 5, 2915.
- 40 Pang, X.; Imin, P.; Zhitomirsky, I.; Adronov, A. Macromolecules 2010, 43, 10376.
- 41 Guldi, D. M.; Rahman, G. M. A.; Zerbetto, F.; Prato, M. Acc. Chem. Res. 2005, 38, 871.
- 42 Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
- 43 Pötschke, P.; Fornes, T. D.; Paul, D. R. Polymer 2002, 43, 3247.
Citing Literature
July 10, 2017