Phosphate ester side-chain-modified conjugated polymer for hybrid solar cells
Zhongqiang Zhang
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorZhengneng Jin
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorWeifei Fu
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorMinmin Shi
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorCorresponding Author
Hongzheng Chen
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Correspondence to: H. Chen (E-mail: [email protected])Search for more papers by this authorZhongqiang Zhang
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorZhengneng Jin
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorWeifei Fu
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorMinmin Shi
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Search for more papers by this authorCorresponding Author
Hongzheng Chen
Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People's Republic of China
Correspondence to: H. Chen (E-mail: [email protected])Search for more papers by this authorABSTRACT
Although nanocrystals have several advantages of tunable bandgap and high carrier mobility, it is still challenging to achieve high-performance polymer: nanocrystals hybrid solar cells (HSC) due to the complicated surface problem. Many efforts have been devoted to replace the long alkyl chain on the surface of nanocrystals to improve the charge transfer and transport. Herein, we modified the alkyl chain in poly[2,6–(4,4-bis(2-ethylhexyl)−4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7–(2,1,3-benzothiadiazole)] (PCPDTBT) by phosphate ester. Due to its strong affinity to CdSe nanocrystals, the resulting polymers can spontaneously exchange the long chain ligands in one-step process. With the improved morphology of polymer: CdSe blended film, a power conversion efficiency (PCE) of 3.12% was achieved for hybrid solar cells. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45003.
REFERENCES
- 1 Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
- 2 Coughlin, J. E.; Henson, Z. B.; Welch, G. C.; Bazan, G. C. Acc. Chem. Res. 2014, 47, 257.
- 3 Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Chem. Rev. 2014, 114, 7006.
- 4 Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Nat. Photon 2015, 9, 403.
- 5 Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293.
- 6 Huang, L.; Chen, L.; Huang, P.; Wu, F.; Tan, L.; Xiao, S.; Zhong, W.; Sun, L.; Chen, Y. Adv. Mater. 2016, 28, 4852.
- 7 Liu, X.; Li, X.; Li, Y.; Song, C.; Zhu, L.; Zhang, W.; Wang, H. Q.; Fang, J. Adv. Mater. 2016, 28, 7405.
- 8 Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040.
- 9 Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Adv. Mater. 2013, 25, 4766.
- 10 Fan, Q.; Su, W.; Guo, X.; Guo, B.; Li, W.; Zhang, Y.; Wang, K.; Zhang, M.; Li, Y. Adv. Energy Mater. 2016, 1600430.
- 11 Sonar, P.; Lim, J. P. F.; Chan, K. L. Energy Environ. Sci. 2011, 4, 1558.
- 12 Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.
- 13 Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z.-G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganas, O.; Li, Y.; Zhan, X. Adv. Mater. 2017, 29, DOI: 10.1002/adma.201604155.
- 14 Yao, H.; Chen, Y.; Qin, Y.; Yu, R.; Cui, Y.; Yang, B.; Li, S.; Zhang, K.; Hou, J. Adv. Mater. 2016, 28, 8283.
- 15 Qian, L.; Yang, J.; Zhou, R.; Tang, A.; Zheng, Y.; Tseng, T.-K.; Bera, D.; Xue, J.; Holloway, P. H. J. Mater. Chem. 2011, 21, 3814.
- 16 Yang, J.; Tang, A.; Zhou, R.; Xue, J. Sol. Energy Mater. Sol. Cells 2011, 95, 476.
- 17 Zhou, R.; Stalder, R.; Xie, D.; Cao, W.; Zheng, Y.; Yang, Y.; Plaisant, M.; Holloway, P. H.; Schanze, K. S.; Reynolds, J. R.; Xue, J. ACS Nano 2013, 7, 4846.
- 18 McGehee, M. D. MRS Bull. 2009, 34, 95.
- 19 Borchert, H. Energy Environ. Sci. 2010, 3, 1682.
- 20 Chougule, M. A.; Sen, S.; Patil, V. B. J. Appl. Polym. Sci. 2012, 125, 541.
- 21 Chen, Z.; Zhang, H.; Zeng, Q.; Wang, Y.; Xu, D.; Wang, L.; Wang, H.; Yang, B. Adv. Energy Mater. 2014, 4, 1400235.
- 22 Tan, F.; Qu, S.; Wu, J.; Liu, K.; Zhou, S.; Wang, Z. Nanoscale Res. Lett. 2011, 6, 298.
- 23 Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
- 24 Wang, W.; Banerjee, S.; Jia, S.; Steigerwald, M. L.; Herman, I. P. Chem. Mater. 2007, 19, 2573.
- 25 Fu, H.; Tsang, S. W. Nanoscale 2012, 4, 2187.
- 26 Böhm, M. L.; Kist, R. J. P.; Morgenstern, F. S. F.; Ehrler, B.; Zarra, S.; Kumar, A.; Vaynzof, Y.; Greenham, N. C. Adv. Energy Mater. 2014, 4, 1400139.
- 27 Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muhlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981.
- 28 Zhang, H.; Wang, D.; Yang, B.; Mohwald, H. J. Am. Chem. Soc. 2006, 128, 10171.
- 29 Zhang, H.; Wang, L.; Xiong, H.; Hu, L.; Yang, B.; Li, W. Adv. Mater. 2003, 15, 1712.
- 30 Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180.
- 31 Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. J. Am. Chem. Soc. 2015, 137, 1875.
- 32 Giansante, C.; Mastria, R.; Lerario, G.; Moretti, L.; Kriegel, I.; Scotognella, F.; Lanzani, G.; Carallo, S.; Esposito, M.; Biasiucci, M.; Rizzo, A.; Gigli, G. Adv. Funct. Mater. 2015, 25, 111.
- 33 Fu, W.; Shi, Y.; Qiu, W.; Wang, L.; Nan, Y.; Shi, M.; Li, H.; Chen, H. Phys. Chem. Chem. Phys. 2012, 14, 12094.
- 34 Fu, W.; Wang, L.; Ling, J.; Li, H.; Shi, M.; Xue, J.; Chen, H. Nanoscale 2014, 6, 10545.
- 35 Fu, W.; Shi, Y.; Wang, L.; Shi, M.; Li, H.; Chen, H. Sol. Energy Mater. Sol. Cells 2013, 117, 329.
- 36 Fu, W.; Wang, L.; Zhang, Y.; Ma, R.; Zuo, L.; Mai, J.; Lau, T. K.; Du, S.; Lu, X.; Shi, M.; Li, H.; Chen, H. ACS Appl. Mater. Interface 2014, 6, 19154.
- 37 Greaney, M. J.; Das, S.; Webber, D. H.; Bradforth, S. E.; Brutchey, R. L. ACS Nano 2012, 6, 4222.
- 38 Lu, H.; Joy, J.; Gaspar, R. L.; Bradforth, S. E.; Brutchey, R. L. Chem. Mater. 2016, 28, 1897.
- 39 Zhao, L.; Lin, Z. Adv. Mater. 2012, 24, 4353.
- 40 Liu, J.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J. J. Am. Chem. Soc. 2004, 126, 6550.
- 41 Huang, Y.-C.; Hsu, J.-H.; Liao, Y.-C.; Yen, W.-C.; Li, S.-S.; Lin, S.-T.; Chen, C.-W.; Su, W.-F. J. Mater. Chem. 2011, 21, 4450.
- 42 Ma, W.; Luther, J. M.; Zheng, H.; Wu, Y.; Alivisatos, A. P. Nano Lett. 2009, 9, 1699.
- 43 Ma, W.; Swisher, S. L.; Ewers, T.; Engel, J.; Ferry, V. E.; Atwater, H. A.; Alivisatos, A. P. ACS Nano 2011, 5, 8140.
- 44 Owen, J. S.; Park, J.; Trudeau, P.-E.; Alivisatos, A. P. J. Am. Chem. Soc. 2008, 130, 12279.
- 45 Henson, Z. B.; Zhang, Y.; Nguyen, T. Q.; Seo, J. H.; Bazan, G. C. J. Am. Chem. Soc. 2013, 135, 4163.
- 46 Cheng, S.-W.; Chiou, D.-Y.; Tsai, C.-E.; Liang, W.-W.; Lai, Y.-Y.; Hsu, J.-Y.; Hsu, C.-S.; Osaka, I.; Takimiya, K.; Cheng, Y.-J. Adv. Funct. Mater. 2015, 25, 6131.
- 47 Ma, T.; Jiang, K.; Chen, S.; Hu, H.; Lin, H.; Li, Z.; Zhao, J.; Liu, Y.; Chang, Y.-M.; Hsiao, C.-C.; Yan, H. Adv. Energy Mater. 2015, 1501282.
- 48 Spielbauer, D.; Mekhemer, G. A. H.; Riemer, T.; Zaki, M. I.; Knözinger, H. J. Phys. Chem. B 1997, 101, 4681.
- 49 Michelmore, A.; Gong, W.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 2985.
- 50 Briseno, A. L.; Holcombe, T. W.; Boukai, A. I.; Garnett, E. C.; Shelton, S. W.; Frechet, J. J.; Yang, P. Nano Lett. 2010, 10, 334.
- 51 Zhao, L.; Pang, X.; Adhikary, R.; Petrich, J. W.; Lin, Z. Angew. Chem. Int. Ed. Engl. 2011, 50, 3958.
- 52 Zhao, L.; Pang, X.; Adhikary, R.; Petrich, J. W.; Jeffries-El, M.; Lin, Z. Adv. Mater. 2011, 23, 2844.
Citing Literature
July 10, 2017