Biorenewable blends of polyamide-4,10 and polyamide-6,10
Christopher S. Moran
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorAgathe Barthelon
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorAndrew Pearsall
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorVikas Mittal
Department of Chemical Engineering, Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for more papers by this authorCorresponding Author
John R. Dorgan
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Correspondence to: J. R. Dorgan (E-mail: [email protected])Search for more papers by this authorChristopher S. Moran
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorAgathe Barthelon
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorAndrew Pearsall
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorVikas Mittal
Department of Chemical Engineering, Petroleum Institute, Abu Dhabi, United Arab Emirates
Search for more papers by this authorCorresponding Author
John R. Dorgan
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
Correspondence to: J. R. Dorgan (E-mail: [email protected])Search for more papers by this authorABSTRACT
Biobased polymers hold the promise of greatly improved sustainability metrics. In this study, semicrystalline polymer blends are formulated between two partially biorenewable polyamides. Polyamide 4,10 (PA410) is melt mixed with polyamide-6,10 (PA610). Physical properties of the blends are investigated using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), impact testing, and tensile testing. Morphological features are studied using small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS). The previously unreported equilibrium enthalpy of fusion for PA410 is found to be 269 J/g. Melting point depression from DSC is used to establish miscibility and calculate the polymer–polymer interaction parameter which is approximately independent of composition and equal to −0.25 kJ/mol. Crystallization induced phase separation is observed wherein crystallization drives phase separation. SAXS exhibits an increase in lamellar long spacing with increasing PA610 content. WAXS confirms the presence of only PA410 and PA610 crystals. The mechanical properties of the blends are shown to deviate from a simple law of mixtures. This miscible biorenewable polymer blend, exhibiting crystallization induced phase separation, and characterized by superior properties is of both scientific and potential commercial interest. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43626.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app43626-sup-0001-suppinfo.docx341.6 KB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Plastics News, Study Predicts Sharp Increase in Bioplastics Production by 2018. http://www.plasticsnews.com/article/20141204/NEWS/141209947/study-predicts-sharp-increase-in-bioplastics-production-by-2018 (accessed November 18, 2015).
- 2Plastics News, Study Says Demand for Bioplastics to Grow 19 Percent Annually. http://www.plasticsnews.com/article/20140305/NEWS/140309966/study-says-demand-for-bioplastics-to-grow-19-percent-annually (accessed November 18, 2015).
- 3 Ahmann, D.; Dorgan, J. R. Ind. Biotechnol. 2007, 3, 218.
- 4 Halley, P. J. D.; John, R. Mater. Res. Soc. Bull. 2011, 36, 687.
- 5 Dorgan, J. R. Macromol. Symp. 2001, 175, 55.
- 6 Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Knauss, D. M.; Hait, S. B. J. Rheol. 2005, 49, 607.
- 7 Braun, B.; Dorgan, J. R.; Knauss, D. M. J. P. Environ. 2006, 14, 49.
- 8 Dorgan, J. R.; Janzen, J.; Knauss, D. M.; Hait, S. B.; Limoges, B. R.; Hutchinson, M. H. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 3100.
- 9 Dorgan, J. R.; Lehermeier, H.; Mang, M. J. Polym. Environ. 2000, 8, 1.
- 10
Tsuji, H. Bio-Based Plastics: Mater. Appl. S. Kabasci, Eds.; Wiley: New Delhi, 2013, Chapter 8; pp 171–219.
10.1002/9781118676646.ch8 Google Scholar
- 11 Vink, E. T.; Davies, S. Ind. Biotechnol. 2015, 11, 167.
- 12 Vink, E. T.; Davies, S.; Kolstad, J. J. Ind. Biotechnol. 2010, 6, 212.
- 13 Vink, E. T.; Glassner, D. A.; Kolstad, J. J.; Wooley, R. J.; O'Connor, R. P. Ind. Biotechnol. 2007, 3, 58.
- 14 Vink, E. T.; Rábago, K.; Glassner, D. A.; Springs, B.; O'Connor, R. P.; Kolstad, J.; Gruber, P. R. Macromol. Biosci. 2004, 4, 551.
- 15 Vink, E. T.; Rabago, K. R.; Glassner, D. A.; Gruber, P. R. Polym. Degrad. Stab. 2003, 80, 403.
- 16 Aharoni, S. M. n-Nylons, their Synthesis, Structure, and Properties; Wiley: 1997.
- 17 Cicero, J. A.; Dorgan, J. R. J. Polym. Environ. 2002, 9, 1.
- 18 Cicero, J. A.; Dorgan, J. R.; Dec, S. F.; Knauss, D. M. Polym. Degrad. Stab. 2002, 78, 95.
- 19 Cicero, J. A.; Dorgan, J. R.; Garrett, J.; Runt, J.; Lin, J. S. J. Appl. Polym. Sci. 2002, 86, 2839.
- 20 Cicero, J. A.; Dorgan, J. R.; Janzen, J.; Garrett, J.; Runt, J.; Lin, J. S. J. Appl. Polym Sci. 2002, 86, 2828.
- 21 Gupta, B.; Revagade, N.; Hilborn, J. Prog. Polym. Sci. 2007, 32, 455.
- 22 Okada, A.; Usuki, A. Macromol. Mater. Eng. 2006, 291, 1449.
- 23 Braun, B.; Dorgan, J. R.; Hollingsworth, L. O. Biomacromolecules 2012, 13, 2013.
- 24 Sobkowicz, M. J.; Braun, B.; Dorgan, J. R. Green Chem. 2009, 11, 680.
- 25 Sobkowicz, M. J.; Dorgan, J. R.; Gneshin, K. W. Aust. J. Chem. (Invited) 2009, 62, 865.
- 26 Sobkowicz, M. J.; Dorgan, J. R.; Gneshin, K. W.; Herring, A. M.; McKinnon, J. T. Carbon 2009, 47, 622.
- 27 Sobkowicz, M. J.; Sosa, R.; Dorgan, J. R. J. Appl. Polym. Sci. 2011, 121, 2029.
- 28 Harmsen, P. F. H.; Hackmann, M. M.; Bos, H. L. Biofuels Bioprod. Biorefin. 2014, 8, 306.
- 29 Shen, L.; Huafe, J.; Patel, M. K. STS Copernicus Institute for Sustainable Development and Innovation at Utrecht University, Utrecht, Netherlands, 2009.
- 30 Dias, E. L.; Shoemaker, J. A. W.; Boussie, T. R.; Murphy, V. J. (Rennovia Inc. USA). U.S. Patent 0,184,495, July 18, 2013.
- 31 Fruchey, O. S.; Manzer, L. E.; Dunuwila, D.; Keen, B. T.; Albin, B. A.; Clinton, N. A.; Dombek, B. D. U.S. Patent Application US20140135471 A1: Processes for Producing Butanediol (Bdo), Diaminobutane (Dab), Succinic Dinitrile (Sdn) and Succinamide (Dam) 2011; p 37.
- 32 Yu, L.; Dean, K.; Li, L. Prog. Polym. Sci. 2006, 31, 576.
- 33 Sionkowska, A. Prog. Polym. Sci. 2011, 36, 1254.
- 34 Feldman, D. J. Macromol. Sci. Pure Appl. Chem. 2005, A42, 587.
- 35 Koulouri, E. G.; Scourlis, E. C.; Kallitsis, J. K. Polymer 1999, 40, 4887.
- 36 Puglisi, C.; Samperi, F.; Di Giorgi, S.; Montaudo, G. Macromolecules 2003, 36, 1098.
- 37 Kuo, S. W. Polymer 2008, 49, 4420.
- 38 Paul, D. R.; Barlow, J. W. Polymer 1984, 25, 487.
- 39 Nakai, A.; Shiwaku, T.; Wang, W.; Hasegawa, H.; Hashimoto, T. Macromolecules 1996, 29, 5990.
- 40 Puskas, J. E.; Kwon, Y.; Altstädt, V.; Kontopoulou, M. Polymer 2007, 48, 590.
- 41 Karode, S. K.; Kulkarni, S. S.; Suresh, A. K.; Mashelkar, R. A. Chem. Eng. Sci. 1998, 53, 2649.
- 42 Karode, S. K.; Kulkarni, S. S.; Suresh, A. K.; Mashelkar, R. A. Chem. Eng. Sci. 1997, 52, 3243.
- 43 Patel, R.; Ruehle, D. A.; Dorgan, J. R.; Halley, P.; Martin, D. Polym. Eng. Sci. 2014, 54, 1523.
- 44 Amass, W.; Amass, A.; Tighe, B. Polym. Int. 1998, 47, 89.
- 45 Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
- 46 Chandra, R.; Rustgi, R. Prog. Polym. Sci. 1998, 23, 1273.
- 47 Gross, R. A.; Kalra, B. Science 2002, 297, 803.
- 48
Ikada, Y.;
Tsuji, H. Macromol. Rapid Commun. 2000, 21, 117.
10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X CAS Web of Science® Google Scholar
- 49
Marra, K. G.;
Szem, J. W.;
Kumta, P. N.;
DiMilla, P. A.;
Weiss, L. E. J. Biomed. Mater. Res. 1999, 47, 324.
10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 50 Martin, O.; Avérous, L. Polymer 2001, 42, 6209.
- 51 Samir, M. A. S. A.; Alloin, F.; Dufresne, A. Biomacromolecules 2005, 6, 612.
- 52 Sudesh, K.; Abe, H.; Doi, Y. Prog. Polym. Sci. 2000, 25, 1503.
- 53 Nair, N. R.; Nampoothiri, K. M.; Pandey, A. Biotechnol. Lett. 2012, 34, 2031.
- 54 Nitz, H.; Semke, H.; Mulhaupt, R. Macromol. Mater. Eng. 2001, 286, 737.
- 55 Cote, P.; Brisson, J. Macromolecules 1994, 27, 7329.
- 56 Ellis, T. S. Polymer 1988, 29, 2015.
- 57 Ellis, T. S. Macromolecules 1989, 22, 742.
- 58 Ellis, T. S. Polymer 1990, 31, 1058.
- 59 Ellis, T. S. Macromolecules 1991, 24, 3845.
- 60 Ellis, T. S. Abstr. Pap. Am. Chem. Soc. 1992, 204, 264.
- 61 Ellis, T. S. Macromol. Symp. 1996, 112, 47.
- 62 Thomas, S. E. Polymer 1995, 36, 3919.
- 63 Ruehle, D. A.; Perbix, C.; Castañeda, M.; Dorgan, J. R.; Mittal, V.; Halley, P.; Martin, D. Polymer 2013, 54, 6961.
- 64 Zhang, G. Z.; Yoshida, H.; Kawai, T. Thermochim. Acta 2004, 416, 79.
- 65 Verma, A.; Deopura, B. L.; Sengupta, A. K. J. Appl. Polym. Sci. 1986, 31, 747.
- 66 Wei, M.; Shin, I. D.; Urban, B.; Tonelli, A. E. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 1369.
- 67 Adhikari, R.; Michler, G. H. Prog. Polym. Sci. 2004, 29, 949.
- 68 Alfonso, G. C.; Russell, T. P. Macromolecules 1986, 19, 1143.
- 69 Jo, W. H.; Kwon, I. H. Macromolecules 1991, 24, 3368.
- 70 Liu, J. P.; Jungnickel, B. J. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 1917.
- 71 Nedoma, A. J.; Robertson, M. L.; Wanakule, N. S.; Balsara, N. P. Ind. Eng. Chem. Res. 2008, 47, 3551.
- 72 Nishi, T.; Wang, T. T. Macromolecules 1975, 8, 909.
- 73 Painter, P. C.; Shenoy, S. L.; Bhagwagar, D. E.; Fishburn, J.; Coleman, M. M. Macromolecules 1991, 24, 5623.
- 74 Rim, P. B.; Runt, J. P. Macromolecules 1983, 16, 762.
- 75 Runt, J.; Gallagher, K. P. Polym. Commun. 1991, 32, 180.
- 76 Zhang, H. H.; Prudhomme, R. E. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 723.
- 77 Rim, P. B.; Runt, J. P. Macromolecules 1984, 17, 1520.
- 78 Scott, R. L. J. Chem. Phys. 1949, 17, 279.
- 79 Jasinska-Walc, L.; Villani, M.; Dudenko, D.; van Asselen, O.; Klop, E.; Rastogi, S.; Hansen, M. R.; Koning, C. E. Macromolecules 2012, 45, 2796.
- 80 Jones, N.; Atkins, E.; Hill, M.; Cooper, S.; Franco, L. Polymer 1997, 38, 2689.
- 81 Dasgupta, S.; Hammond, W. B.; Goddard, W. A. J. Am. Chem. Soc. 1996, 118, 12291.
- 82 Alexander, L. E. X-Ray Diffraction Methods in Polymer Science; Wiley: New York, London, Sydney, Toronto, 1969.