Flow-induced solidification of high-impact polypropylene copolymer compositions: Morphological and mechanical effects
Martin van Drongelen
Department of Mechanical Engineering, Materials Technology Institute, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Search for more papers by this authorMarkus Gahleitner
Borealis Polyolefine GmbH, Innovation Headquarters, St. Peterstr. 25, 4021 Linz, Austria
Search for more papers by this authorAnne B. Spoelstra
Department of Chemical Engineering and Chemistry, Laboratory of Polymer Technology, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Search for more papers by this authorLeon E. Govaert
Department of Mechanical Engineering, Materials Technology Institute, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Search for more papers by this authorCorresponding Author
Gerrit W. M. Peters
Department of Mechanical Engineering, Materials Technology Institute, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Correspondence to: G. Peters (E-mail: [email protected])Search for more papers by this authorMartin van Drongelen
Department of Mechanical Engineering, Materials Technology Institute, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Search for more papers by this authorMarkus Gahleitner
Borealis Polyolefine GmbH, Innovation Headquarters, St. Peterstr. 25, 4021 Linz, Austria
Search for more papers by this authorAnne B. Spoelstra
Department of Chemical Engineering and Chemistry, Laboratory of Polymer Technology, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Search for more papers by this authorLeon E. Govaert
Department of Mechanical Engineering, Materials Technology Institute, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Search for more papers by this authorCorresponding Author
Gerrit W. M. Peters
Department of Mechanical Engineering, Materials Technology Institute, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
Correspondence to: G. Peters (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polypropylene-based impact copolymers are a complex composition of matrix material, a dispersed phase and many optional modifiers. The final heterophasic morphology of such systems is influenced significantly by the processing step, adding an additional level of complexity to understanding the structure-property relation. This topic has hardly been studied so far. The effect of thermal history and shear flow on the solidification process of three different compositions of a polypropylene-based impact copolymer, i.e., one base material and two compounds with either high density polyethylene or ethylene-co-octene added, is investigated. Samples are examined using differential scanning calorimetry, extended dilatometry, transmissions electron microscopy, and finally, tensile testing. With flow, the materials show pronounced flow-enhanced crystallization of the matrix material and deformed filler content. Compared to the base polymer, the stress–strain response of the compounded samples shows a lower yield stress and more pronounced influence of shear, reflected in the increasing strain hardening modulus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42040.
REFERENCES
- 1 Galli, P.; Haylock, J. C. Makromol. Chem. Macromol. Symp. 1992, 63, 19.
- 2 Cecchin, G.; Morini, G.; Pelliconi, A. Macromol. Symp. 2001, 173, 195.
- 3 Grein, C.; Bernreitner, K.; Hauer, A.; Gahleitner, M.; Neißl, W. J. Appl. Polym. Sci. 2003, 87, 1702.
- 4 Coppola, F.; Greco, R.; Martuscelli, E.; Kammer, H. W.; Kummerlowe, C. Polymer 1987, 28, 47.
- 5 Gahleitner, M.; Hauer, A.; Bernreitner, K.; Ingolic, E. Int. Polym. Process. 2002, 17, 318.
- 6 Li, P. L.; Yi, B.; Yang, M. B. Polym. Eng. Sci. 2011, 51, 2425.
- 7 Chen, Y.; Ye, L. J. Appl. Polym. Sci. 2011, 121, 1013.
- 8 Kock, C.; Gahleitner, M.; Schausberger, A.; Ingolic, E. J. Appl. Polym. Sci. 2012, 128, 1484.
- 9 Bakshi, S.; Kulshreshtha, A. K.; Singh, B. P.; Anand, J. S. Polym. Test. 1989, 8, 191.
- 10 Gensler, R.; Plummer, C. J. G.; Grein, C.; Kausch, H. H. Polymer 2000, 41, 3809.
- 11 Koch, T.; Machl, D. Polym. Test. 2007, 26, 927.
- 12 Doshev, P.; Lach, R.; Lohse, G.; Heuvelsland, A.; Grellmann, W.; Radusch, H. J. Polymer 2005, 46, 9411.
- 13 Grein, C.; Gahleitner, M.; Knogler, B.; Nestelberger, S. Rheol. Acta 2007, 46, 1083.
- 14 Karger-Kocsis, J.; Csikai, I. Polym. Eng. Sci. 1987, 27, 241.
- 15 Marchal, T.; Oldenhove, B.; Daost, D.; Legras, R.; Delannay, F. Polym. Eng. Sci. 1998, 38, 2063.
- 16 Pantani, R.; Titomanlio, G. J. Appl. Polym. Sci. 2001, 81, 267.
- 17 Zhong, G. J.; Li, Z. M. Polym. Eng. Sci. 2005, 45, 1655.
- 18 Housmans, J. W.; Balzano, L.; Adinolfi, M.; Peters, G. W. M.; Meijer, H. E. H. Macromol. Mater. Eng. 2009, 294, 231.
- 19 Pantani, R.; Balzano, L.; Peters, G. W. M. Macromol. Mater. Eng. 2011, 296, 740.
- 20 Housmans, J. W.; Steenbakkers, R. J. A.; Roozemond, P. C.; Peters, G. W. M.; Meijer, H. E. H. Macromolecules 2009, 42, 5728.
- 21 Forstner, R.; Peters, G. W. M.; Rendina, C.; Housmans, J. W.; Meijer, H. E. H. J. Therm. Anal. Calorim. 2009, 98, 683.
- 22 van Erp, T. B.; Govaert, L. E.; Peters, G. W. M. Macromol. Mater. Eng. 2012, 298, 348.
- 23 Montezinos, D.; Wells, B. G.; Burns, J. L. J. Polym. Sci.: Polym. Lett. Ed. 1985, 23, 421.
- 24 Ward, I. M. Mechanical Properties of Solid Polymers; Wiley: New York, 1983.
- 25 Bensason, S.; Minick, J.; Moet, A.; Chum, S.; Hiltner, A.; Baer, E. J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 1301.
- 26 Kock, C.; Aust, M.; Grein, C.; Gahleitner, M. J. Appl. Polym. Sci. 2013, 130, 287.
- 27
van der Beek, M. H. E.;
Peters, G. W. M.;
Meijer, H. E. H. Int. Polym. Process. 2005, 20, 111.
10.3139/217.1872 Google Scholar
- 28 van Erp, T. B.; Balzano, L.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M. Polymer 2013, 53, 5896.
- 29 He, J.; Zoller, P. J. Polym. Sci. Part B: Polym. Phys. 1994, 32, 1049.
- 30 Eder, G.; Janeschitz-Kriegl, H. Processing of Polymers. Materials Science and Technology: A Comprehensive Treatment. Wiley VCH: Weinheim, 1997; Vol. 18, Chapter 5, pp 269–342.
- 31 Stehling, F. C.; Huff, T.; Speed, C. S. J. Appl. Polym. Sci. 1981, 26, 2693.
- 32 Kim, G. M.; Michler, G. H. Polymer 1998, 39, 5689.
- 33 Zacur, R.; Goizueta, G.; Capiati, N. Polym. Eng. Sci. 2000, 40, 1921.
- 34 Vananroye, A.; Cardinaels, R.; van Puyvelde, P.; Moldenaers, P. J. Rheol. 2008, 52, 1459.
- 35 Wittmann, J. C.; Lotz, B. Prog. Polym. Sci. 1990, 15, 909.
- 36 Nishioa, Y.; Yamanea, T.; Takahashi, T. J. Macromol. Sci. Part B: Phys. 1984, 23, 17.
- 37 Zhang, X. M.; Ajji, A. Polymer 2005, 46, 3385.
- 38 Vanden Eynde, S.; Mathot, V. B. F.; Koch, M. H. J.; Reynaers, H. Polymer 2000, 41, 4889.
- 39 Reid, B. O.; Vadlamudi, M.; Mamum, A.; Janani, H.; Gao, H.; Hu, W.; Alamo, R. G. Macromolecules 2013, 46, 6485.
- 40
Bucknall, C. B. Toughened Plast. Appl. Sci. 1977.
10.1007/978-94-017-5349-4 Google Scholar
- 41 Kim, G. M.; Michler, G. H. Polymer 1998, 39, 5699.
- 42 Kim, G. M. PhD thesis, Martin-Luther-University, Halle-Wittenberg University, Germany, 1996.
- 43 Schrauwen, B. A. G.; Breemen, L. C. A. v.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M.; Meijer, H. E. H. Macromolecules 2004, 37, 8618.
- 44 van Meerveld, J.; Peters, G. W. M.; Hutter, M. Rheol. Acta 2004, 44, 119.
- 45 van Erp, T. B.; Cavallo, D.; Peters, G. W. M.; Govaert, L. E. J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 1438.
Citing Literature
June 15, 2015