Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes
Wannarat Panwiriyarat
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, 72085, Le Mans Cedex, France
Search for more papers by this authorCorresponding Author
Varaporn Tanrattanakul
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand===Search for more papers by this authorJean-François Pilard
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, 72085, Le Mans Cedex, France
Search for more papers by this authorPamela Pasetto
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, 72085, Le Mans Cedex, France
Search for more papers by this authorChuanpit Khaokong
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Search for more papers by this authorWannarat Panwiriyarat
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, 72085, Le Mans Cedex, France
Search for more papers by this authorCorresponding Author
Varaporn Tanrattanakul
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand===Search for more papers by this authorJean-François Pilard
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, 72085, Le Mans Cedex, France
Search for more papers by this authorPamela Pasetto
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, 72085, Le Mans Cedex, France
Search for more papers by this authorChuanpit Khaokong
Department of Materials Science and Technology, Bioplastic Research Unit, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Search for more papers by this authorAbstract
Bio-based polyurethanes (PU) containing poly(ε-caprolactone) diol (PCL) and hydroxyl telechelic natural rubber (HTNR) were synthesized. The effect of the diisocyanate structure and the molecular weights of diols on the mechanical properties of PU were investigated. Three different molecular structures of diisocyanate were employed: an aliphatic diisocyanate (hexamethylene diisocyanate, HDI), an aromatic diisocyanate (toluene-2,4-diisocyanate, TDI) and a cycloalkane diisocyanate (isophorone diisocyanate, IPDI). Two molecular weights of each diol were selected. When HDI was employed, a crystalline PU was generated while asymmetrical structures of TDI and IPDI provided an amorphous PU. The presence of crystalline domains was responsible of a change in tensile behavior and physical properties. PU containing TDI and IPDI showed a rubber-like behavior: low Young's modulus and high elongation at break. The crystalline domains in PU containing HDI acted as physical crosslinks, enhancing the Young's modulus and reducing the elongation at break, and they are responsible of the plastic yielding. The crystallinity increased the tear strength, the hardness and the thermal stability of PU. There was no significant difference between the TDI and IPDI on the mechanical properties and the physical characteristics. Higher molecular weight of PCL diol changed tensile behavior from the rubber-like materials to the plastic yielding. Thermal and dynamic mechanical properties were determined by using DSC, TGA and DMTA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
References
- 1
Hepburn, C.
Polyurethane Elastomers,
2nd ed;
Elsevier Science Publishers:
New York,
1992; p
1.
10.1007/978-94-011-2924-4_1 Google Scholar
- 2 Prisacariu, C. Polyurethane Elastomers from Morphology to Mechanical Aspects; Spinger Wien New York: New York, 2011.
- 3 Li, F.; Hou, J.; Zhu, W.; Zhang, X.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K. J. Appl. Polym. Sci. 1996, 62, 631.
- 4 Lan, P. N.; Corneillie, S.; Schacht, E.; Davies, M.; Shard, A. Biomaterials 1996, 17, 2273.
- 5 Wang, W.; Ping, P.; Yu, H.; Chen, X.; Jing, X. J. Polym. Sci. A Polym. Chem. 2006, 44, 5505.
- 6 Ping, P.; Wang, W.; Chen, X.; Jing, X. J. Polym. Sci. B Polym. Phys. 2007, 45, 557.
- 7
Skarja, G. A.;
Woodhouse, K. A.
J. Appl. Polym. Sci.
2000,
75,
1522.
10.1002/(SICI)1097-4628(20000321)75:12<1522::AID-APP11>3.0.CO;2-A CAS Web of Science® Google Scholar
- 8 Chiou, B. S.; Schoen, P. E. J. Appl. Polym. Sci. 2002, 83, 212.
- 9 Rogulska, M.; Kultys, A.; Pikus, S. J. Appl. Polym. Sci. 2008, 110, 1677.
- 10 D'Arlas, B. F.; Rueda, L.; Caba, K.; Mondragon, I.; Eceiza, A. Polym. Eng. Sci. 2008, 48, 519.
- 11 Maafi, E. M.; Malek, F.; Tighzert, L. J. Appl. Polym. Sci. 2010, 115, 3651.
- 12 Gorna, K.; Gogolewski, S. Polym. Degrad. Stab. 2002, 75, 113.
- 13 Gorna, K.; Polowinski, S.; Gogolewski, S. J. Polym. Sci. A Polym. Chem. 2002, 40, 156.
- 14 Sarkar, D.; Yang, J. C.; Gupta, A. S.; Lopina, S. T. J. Biomed. Mater. Res A. 2009, 90, 263.
- 15 Watnabe, A.; Takebayashi, Y.; Ohtsubo, T.; Furukawa, M. J. Appl. Polym. Sci. 2009, 114, 246.
- 16 Gong, C. Y.; Fu, S. Z.; Gu, Y. C.; Liu, C. B.; Kan, B.; Deng, H. X.; Luo, F.; Qian, Z. Y. J. Appl. Polym. Sci. 2009, 113, 1111.
- 17 Kim, B. K.; Lee, S. Y.; Xu, M. Polymer 1996, 37, 5781.
- 18 Bogdanov, B.; Toncheva, V.; Schacht, E.; Finelli, L.; Sarti, B.; Scandola, M. Polymer 1999, 40, 3171.
- 19 Bakare, I. O.; Pavithran, C.; Okieimen, F. E.; Pillai, C. K. J. Appl. Polym. Sci. 2008, 109, 3292.
- 20 Tu, Y. C.; Suppes, G. J.; Hsieh, F. H. J. Appl. Polym. Sci. 2009, 111, 1311.
- 21 Chian, K. S.; Gan, L. H. J. Appl. Polym. Sci. 1998, 68, 509.
- 22 Jalilian, M.; Yeganeh, H.; Haghighi, M. N. Polym. Int. 2008, 57, 1385.
- 23 Lligadas, G.; Ronda, J. C.; Galia, M.; Biermann, U.; Metzer, J. O. J. Polym. Sci. A Polym. Chem. 2006, 44, 634.
- 24 Begines, B.; Zamora, F.; Roffe, I.; Mancera, Galbis, J. A. J. Polym. Sci. A Polym. Chem. 2011, 49, 1953.
- 25 Barikani, M.; Honarkar, H.; Barikani, M. J. Appl. Polym. Sci. 2009, 112, 3157.
- 26 Paul, C. J.; Gopinathan Nair, M. R. Polym. Eng. Sci. 1998, 38, 440.
- 27 Cherian, A. B.; Thachil, E. T. J. Appl. Polym. Sci. 2004, 94, 1956.
- 28 Sun, X.; Ni, X. J. Appl. Polym. Sci. 2004, 94, 2286.
- 29 Gopakumar, S.; Paul, C. J.; Nair, M. R. G. Mater, Sci-Poland. 2005, 23, 227.
- 30 Cherian, A. B.; Abraham, B. T.; Thachil, E. T. J. Appl. Polym. Sci. 2006, 100, 449.
- 31 Kébir, N.; Campistron, I.; Laguerre, A.; Pilard, J. F.; Bunel, C.; Couvercelle, J. P. E-Polymers 2006, 48, 1.
- 32 Kébir, N.; Campistron, I.; Laguerre, A.; Pilard, J. F.; Bunel, C.; Jouenne, T. Biomatherials 2007, 28, 4200.
- 33 Radhakrishnan Nair, M. N.; Gopinathan Nair, M. R. J. Mater. Sci. 2008, 43, 738.
- 34 Chandrasekharan Nair, R.; Gopakumar, S.; Gopinathan Nair, M. R. J. Appl. Polym. Sci. 2007, 103, 955.
- 35 Sukumar, P.; Jayashree, V.; Gopinathan Nair, M. R.; Radhakrishnan Nair, M. N. J. Appl. Polym. Sci. 2009, 111, 19.
- 36 Radhakrishnan Nair, M. N.; Sukumar, P.; Jayashree, V.; Gopinathan Nair, M. R. Polym. Bull. 2010, 65, 83.
- 37 Saetung, A.; Rungvichaniwat, A.; Campistron, I.; Klinpituksa, P.; Laguerre, A.; Phinyocheep, P.; Doutres, O.; Pilard, J. F. J. Appl. Polym. Sci. 2010, 117, 828.
- 38 Saetung, A.; Rungvichaniwat, A.; Campistron, I.; Klinpituksa, P.; Laguerre, A.; Phinyocheep, P.; Doutres, O.; Pilard, J. F. J. Appl. Polym. Sci. 2010, 117, 1279.
- 39 Kébir, N.; Campistron, I.; Laguerre, A.; Pilard, J. F.; Bunel, C. J. Appl. Polym. Sci. 2011, 122, 1677.
- 40 Matsui, M.; Munaro, M.; Akcelrud, L. C. J. Polym. Res. 2011, 18, 2255.
- 41 Zia, K. M.; Zuber, M.; Barikani, M.; Bhatti I. A.; Khan, M. B. Coll. Surf B Biointer. 2009, 72, 248.
- 42 Wang, Y.; Xu, W.; Chen, Y. Coll. Surf B Biointer 2010, 81, 629.
- 43 Wan, M.; Baek, D. K.; Cho, J. H.; Kang, I. K. J. Mater. Sci.: Mater. Med., 2004, 15, 1079.
- 44 Watcharakul, S.; Umsakul, K.; Hodgson, B.; Chumeka, W.; Tanrattanakul, V. Electro. J. Biotechnol. 2011, 15, DOI: 10.2225.
- 45 Panwiriyarat, W.; Tanrattanakul, V.; Pilard, J. F.; Pasetto, P.; Khaokong, C. Adv. Sci. Lett. 2013, 19, 1016.
- 46 Mondal, S.; Hu, J. L. Polym. Int. 2006, 55, 1013.
- 47 Khan, A. S.; Ahmed, Z.; Edirisinghe, M. J.; Wong, F. S. L.; Rehman, I. U. Acta. Biomaterialia. 2008, 4, 1275.
- 48 Romanova, V.; Begishev, V.; Karmanov, V.; Kondyurin, A.; Maitz, M. F. J. Raman. Spectrosc. 2002, 33, 769.
- 49 Hercule, K. M.; Yan, Z.; Christophe, M. M. Int. J. Chem. 2011, 3, 88.
- 50 Hepburn, C. Polyurethane Elastomer, 2nd ed; Elsevier Applied Science LT: New York, 1991.
- 51 Thomas, V.; Muthu, J. J. Mater. Sci.: Mater. Med. 2008, 19, 2721.
- 52 Furukawa, M.; Mitsui, Y.; Fukumaru, T.; Kojio, K. Polymer 2005, 10817.
- 53 Samy, A. M.; Joshua U. O. Prog. Polym. Sci. 2009, 34, 1283.
- 54 Wei, Y.; Cheng, F.; Li, H.; Yu, J. J. Sci. Ind. Res. 2005, 64, 435.