Synthesis of PS-g-POSS hybrid graft copolymer by click coupling via ”graft onto” strategy
Maoshan Niu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorTao Li
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorCorresponding Author
Riwei Xu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China===Search for more papers by this authorXiaoyu Gu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorDingsheng Yu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorYixian Wu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorMaoshan Niu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorTao Li
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorCorresponding Author
Riwei Xu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China===Search for more papers by this authorXiaoyu Gu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorDingsheng Yu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorYixian Wu
State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional polymers (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorAbstract
Polystyrene (PS)-incorporated polyhedral oligomeric silsesquioxanes (POSS) organic–inorganic hybrid graft copolymer could be achieved by click coupling reaction between alkyne groups in POSS and azido groups in PS via “graft onto” strategy. Alkyne-functionalized POSS was synthesized via thiol-ene facile click reaction and subsequent amidation reaction with very high yield. Azido-multifunctionalized PS could be synthesized by chloromethylation and subsequent azido reaction. The chemical structures of PS-(CH2Cl)m, PS-(CH2N3)m, and PS-g-POSS were determined by Fourier transform infrared and 1H NMR characterization. PS-g-POSS presented a better hydrophobic property with contact angle of 113° than that of PS (85°). And PS-g-POSS with ≤5% of grafting degree had lower glass transition temperature (Tg) than that of PS and then it increased up to 112°C with grafting degree. An obvious aggregation of POSS phase with 10–80 nm in size was formed in PS-g-POSS matrix. In addition, 5 wt % of PS-g-POSS was added to general purpose polystyrene (GPPS) to remarkably improve its tensile strength from 45 to 57 MPa. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
References
- 1 Li, S. H.; Lin, M. M.; Toprak, M. S.; Kim, D. K.; Muhammed, M. Nano Rev. 2010, 1, 1.
- 2 Gomez-Romero, P. Adv. Mater. 2001, 13, 163.
- 3 Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S. Macromol. Rapid Commun. 2005, 26, 1878.
- 4 Zhang, Y. D.; Lee, S. H.; Yoonessic, M.; Liang, K. W.; Pittman, C. U. Polymer 2006, 47( 9), 2984.
- 5 Fina, A.; Bocchini, S.; Camino, G. Polym. Degrad. Stab. 2008, 93( 9), 1647.
- 6 Hosaka, N.; Torikai, N.; Otsuka, H.; Takahara, A. Langmuir 2007, 23( 2), 902.
- 7 Hirai, T.; Leolukman, M.; Jin, S.; Goseki, R.; Ishida, Y.; Kakimoto, M.; Hayakawa, T.; Ree, M.; Gopalan, P. Macromolecules 2009, 42, 8835.
- 8 Wei, J.; Tan, B. H.; Bai, Y.; Ma, J.; Lu, X. H. J. Phys. Chem. B 2011, 115, 1929.
- 9 Zhu, H.; Wu, Y. X.; Zhao, J. W.; Xu, R. W.; Huang, Q. G.; Wu, G. Y. Macromol. Symp. 2008, 261, 130.
- 10 Liu, L.; Hu, Y.; Song, L.; Nazare, S.; He, S. Q.; Hull, R. J. Mater. Sci. 2007, 42, 4325.
- 11 Dintcheva1, N. Tz.; Morici, E.; Arrigo, R.; La Mantia, F. P.; Malatesta, V.; Schwab, J. J. eXPRESS Polym. Lett. 2012, 6, 561.
- 12 Voronkov, M. G.; Lavrent'yev, V. I. Top. Curr. Chem. 1982, 102, 199.
- 13 Shockey, E. G.; Bolf, A. G.; Jones, P. F.; Schwab, J. J.; Chaffee, K. P.; Haddad, T. S.; Lichtenhan, J. D. Appl. Organometal. Chem. 1999, 13, 311.
- 14 Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302.
- 15 Misra, R.; Fu, B. X.; Morgan, S. E. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 2441.
- 16 Carroll, J. B., Waddon, A. J., Nakade, H.; Rotello, V. M. Macromolecules 2006, 36, 6289.
- 17 Wu, J., Haddad, T. S.; Mather, P. T. Macromolecules 2009, 42, 1142.
- 18 Zhang, H. X., Lee, H. Y., Shin, Y. J., Yoon, K. B., Noh, S. K.; Lee, D. H. Polym. Int. 2008, 57, 1351.
- 19
Kolb, H. C.,
Finn, M. G.;
Sharpless, K. B.
Angew. Chem. Int. Ed.
2001,
40,
2004.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 20 Barner-Kowollik, C., DuPrez, F. E., Espeel, P., Hawker, C. J., Junkers, T., Schlaad, H.; Van Camp, W. Angew. Chem. Int. Ed. 2011, 50, 60.
- 21 Petraru, L.; Binder, W. H. Polym. Prepr. 2005, 46, 841.
- 22 Trastoy, B., Pérez-Ojeda, M. E.; Sastre, R. Chem. Eur. J. 2010, 6, 3833.
- 23 Cordes, D. B.; Lickiss, P. D.; Ratabou, F. Chem. Rev. 2010, 110, 2081.
- 24 Zhang, W. A.; Müller, A. H. E. Macromolecules 2010, 43, 3148.
- 25 Itsuno, S.; Uchikoshi, K.; Ito, K. J. Am. Chem. Soc. 1990, 112, 8187.
- 26 Wright, M. E.; Toplikar, E. G.; Svejda, S. A. Macromolecules 1991, 24, 5879.
- 27 Moulay, S.; Mehdi, N. Chin. J. Polym. Sci. 2006, 24, 627.
- 28 Weickmann, H.; Delto, R.; Thomann, R.; Brenn, R.; Döll, W.; Koh, K.; Mülhaupt, R. J. Mater. Sci. 2007, 42, 87.
- 29 Zhang, Y. D.; Lee, S.; Yoonessi, M.; Liang, K. W.; Pittman, C. U. Polymer 2006, 47, 2984.
- 30 Wu, J.; Haddad, T. S.; Kim, G. Y.; Mather, P. T. Macromolecules 2007, 40, 544.
- 31 Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E. B. Macromolecules 2002, 35, 2375.
- 32 Song, X. Y.; Geng, H. P.; Li, Q. F. Polymer 2006, 47, 3049.
- 33 Zhang, Z. P.; Gu, A. J.; Liang, G. Z.; Ren, P. G.; Xie, J. Q.; Wang, X. L. Polym. Degrad. Stab. 2007, 92, 1986.