Electrospun polyaniline nanofibers web electrodes for supercapacitors
Sudeshna Chaudhari
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Search for more papers by this authorYogesh Sharma
Physics Section, Department of Paper Technology, Indian Institute of Technology, Saharanpur, Uttar Pradesh 247001, India
Search for more papers by this authorPanikar Sathyaseelan Archana
Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 174576, Singapore
Search for more papers by this authorRajan Jose
Faculty of Industrial Science and Technology (FIST), Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
Search for more papers by this authorSeeram Ramakrishna
Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 174576, Singapore
Search for more papers by this authorSubodh Mhaisalkar
Energy Research Institute @ NTU (ERI@N), Singapore 637553, Singapore
Search for more papers by this authorCorresponding Author
Madhavi Srinivasan
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Energy Research Institute @ NTU (ERI@N), Singapore 637553, Singapore
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore===Search for more papers by this authorSudeshna Chaudhari
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Search for more papers by this authorYogesh Sharma
Physics Section, Department of Paper Technology, Indian Institute of Technology, Saharanpur, Uttar Pradesh 247001, India
Search for more papers by this authorPanikar Sathyaseelan Archana
Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 174576, Singapore
Search for more papers by this authorRajan Jose
Faculty of Industrial Science and Technology (FIST), Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
Search for more papers by this authorSeeram Ramakrishna
Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 174576, Singapore
Search for more papers by this authorSubodh Mhaisalkar
Energy Research Institute @ NTU (ERI@N), Singapore 637553, Singapore
Search for more papers by this authorCorresponding Author
Madhavi Srinivasan
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Energy Research Institute @ NTU (ERI@N), Singapore 637553, Singapore
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore===Search for more papers by this authorAbstract
Polyaniline nanofibers (PANI-NFs) web are fabricated by electrospinning and used as electrode materials for supercapacitors. Field-emission scanning electron microscope micrographs reveal nanofibers web were made up of high aspect ratio (>50) nanofibers of length ∼30 μm and average diameter ∼200 nm. Their electrochemical performance in aqueous (1M H2SO4 and Na2SO4) and organic (1M LiClO4 in propylene carbonate) electrolytes is compared with PANI powder prepared by in situ chemical oxidative polymerization of aniline. The electrochemical properties of PANI-NFs web and PANI powder are studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. PANI-NFs web show higher specific capacitance (∼267 F g−1) than chemically synthesized PANI powder (∼208 F g−1) in 1M H2SO4. Further, PANI-NFs web demonstrated very stable and superior performance than its counterpart due to interconnected fibrous morphology facilitating the faster Faradic reaction toward electrolyte and delivered specific capacitance ∼230 F g−1 at 1000th cycle. Capacitance retention of PANI-NFs web (86%) is higher than that observed for PANI powder (48%) indicating the feasibility of electro spun PANI-NFs web as superior electrode materials for supercapacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
References
- 1 Subramanian, V.; Zhu, H.; Vajtai, R.; Ajayan, P. M.; Wei, B. J. Phys. Chem. B 2005, 109, 20207.
- 2 Conway, B. E. Electrochemical Supercapacitors; Kluwer Academic/Plenum Publishers: New York, 1999.
- 3 Sarangpani, S.; Tilak, B. V.; Chen, B. V. J. Electrochem. Soc. 1996, 143, 3791.
- 4 Ju, Y. W.; Choi, G. R.; Jung, H. R.; Lee, W. J. Electrochim. Acta 2008, 53, 5796.
- 5 Jurewicz, K.; Delpeux, S.; Bertagna, V.; Beguin, F.; Frackowiak, E. Chem. Phys. Lett. 2001, 347, 36.
- 6 Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.
- 7 Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699.
- 8 Kang, E. T.; Neoh, K. G.; Tan, K. L. Prog. Polym. Sci. 1998, 23, 277.
- 9 Liu, J.; Zhou, M.; Fan, L. Z.; Li, P.; Qu, X. Electrochem. Acta 2010, 55, 5819.
- 10 Deng, M.; Yang, B.; Hu, Y. J. Mater. Sci. 2005, 40, 5021.
- 11 Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. J. Power Sources 2010, 195, 3041.
- 12 Cao, Y.; Mallouk, T. E. Chem. Mater. 2008, 20, 5260.
- 13 Martin, C. R. Science 1994, 266, 1961.
- 14 Parthasarathy, R. V.; Martin, C. R. Chem. Mater. 1994, 6, 1627.
- 15
Liang, L.;
Liu, J.;
Windisch, C. F.;
Exarhos, G. J.;
Lin, Y. H.
Angew. Chem. Int. Ed. Engl.
2002,
41,
3665.
10.1002/1521-3773(20021004)41:19<3665::AID-ANIE3665>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 16 Chiou, N. R.; Lui, C. M.; Guan, J. J.; Lee, L. J.; Epstein, A. J. Nat. Nanotechnol. 2007, 2, 354.
- 17 Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck, N. C. T. Polymer 2001, 42, 261.
- 18 Fong, H.; Reneker, D. H.; Chun, I. Polymer 1999, 40, 4585.
- 19 Ramakrishna, S.; Jose, R.; Archana, P. S.; Nair, A. S.; Balamurugan, R.; Venugopal, J.; Teo, W. E. J. Mater. Sci. 2010, 45, 6283.
- 20
MacDiarmid, A. G.
Angew. Chem. Int. Ed. Engl.
2001,
40,
2581.
10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 21 Hoeben, F. J. M.; Jonkhejim, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491.
- 22 Zhang, H.; Cao, G. P.; Wang, W. K.; Yuan, K.; Xu, B.; Zhang, W. F.; Cheng, J.; Yang, Y. S. Electrochim. Acta 2009, 54, 1153.
- 23 Wu, J. H.; Tang, Q. W.; Li, Q. H.; Lin, J. M. Polymer 2008, 49, 5262.
- 24 Zengin, H.; Zhou, W. S.; Jin, J.; Czerw, R.; Smith, D. W.; Echegoyen, L.; Caroll, D. L.; Foulger, S. H.; Ballato, J. Adv. Mater. 2002, 14, 1480.
- 25 Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.
- 26 Kielland, J. J. Am. Chem. Soc. 1937, 59, 1675.
- 27 Reddy, R. N.; Reddy, R. G. J. Power Sources 2006, 156, 700.
- 28 Reddy, A. L. M.; Ramaprabhu, S. J. Phys. Chem. C 2007, 111, 7727.
- 29 Ghaemi, M.; Ataherian, F.; Zolfaghari, A.; Jafari, A. Electrochim. Acta 2008, 53, 4607.
- 30 Sen, P.; De, A. Electrochim. Acta 2010, 55, 4677.
- 31 Wang, L.; Li, X.; Wang, X.; Yang, X.; Lu, L. Curr. Appl. Phys. 2010, 10, 1422.
- 32 Chen, Y. L.; Hu, Z. A.; Chang, Y. Q.; Wang, H. W.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. J. Phys. Chem. C 2011, 115, 2563.
- 33 Yan, X.; Chen, J.; Yang, J.; Xue, Q.; Miele, P. ACS Appl. Mater. Interfaces 2010, 2, 2521.
- 34 Zang, J.; Bao, S. J.; Li, C. M.; Bian, H. J.; Cui, X. Q.; Bao, Q. L.; Sun, C. Q.; Guo, J.; Lian, K. R. J. Phys. Chem. C 2008, 112, 14843.
- 35 Wu, W.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4, 1963.
- 36 Chen, W. C.; Wen, T. C.; Teng, H. Electrochem. Acta 2003, 48, 641.
- 37 Kong, L. B.; Zhang, J.; An, J. J.; Lu, Y. C.; Kang, L. J. Mater. Sci. 2008, 43, 3664.